Toggle light / dark theme

Spiral Multiverse Theory Challenges Big Bang, Proposes Network Of Interconnected Universes

The Spiral Multiverse Theory, proposed by computer engineer Tejas Shinde, challenges the conventional Big Bang theory by suggesting a continuous spiral pattern universe originating from a single point, or singularity. This theory posits that each universe begins with its own bang, forming a network of interconnected universes expanding in a spiral shape. The theory introduces the concept of interdimensional quasars as portals for multiverse travel and suggests each universe undergoes its own inflation without observable changes in the cosmic microwave background. This new perspective on cosmic evolution could open up new avenues for scientific exploration and understanding.

The Spiral Multiverse Theory, proposed by Tejas Shinde, a computer engineer, suggests a continuous spiral pattern universe originating from a single point, known as a singularity. This theory challenges the conventional Big Bang theory, which posits a singular explosive origin for the universe. Instead, the Spiral Multiverse Theory proposes that each universe begins with its own bang, forming a network of interconnected universes. This network, or multiverse, expands in a spiral shape, with the width and length of the arms expanding as the universe expands. The point where all universes connect is referred to as the Everyverse.

The Spiral Multiverse Theory offers a fresh perspective on cosmic evolution and presents a potential path for practical research. It introduces the concept of interdimensional quasars as portals for multiverse travel. The theory also suggests that each universe undergoes its own inflation without observable changes in the cosmic microwave background, a remnant radiation from the Big Bang.

The Universe’s Second, Bigger Bang

Visit https://brilliant.org/scishow/ to get started learning STEM for free. The first 200 people will get 20% off their annual premium subscription and a 30-day free trial.

In 2023, a team of researchers proposed that our universe experienced not one, but TWO Big Bangs about a month apart from one another. The first for the stuff described by our Standard Model of Particle Physics. And the second for that ever elusive Dark Matter and all the particles associated with it.

Hosted by: Stefan Chin (he/him)
———
Support SciShow by becoming a patron on Patreon: / scishow.
———
Huge thanks go to the following Patreon supporters for helping us keep SciShow free for everyone forever: Adam Brainard, Alex Hackman, Ash, Benjamin Carleski, Bryan Cloer, charles george, Chris Mackey, Chris Peters, Christoph Schwanke, Christopher R Boucher, DrakoEsper, Eric Jensen, Friso, Garrett Galloway, Harrison Mills, J. Copen, Jaap Westera, Jason A Saslow, Jeffrey Mckishen, Jeremy Mattern, Kenny Wilson, Kevin Bealer, Kevin Knupp, Lyndsay Brown, Matt Curls, Michelle Dove, Piya Shedden, Rizwan Kassim, Sam Lutfi.
———
Looking for SciShow elsewhere on the internet?
SciShow Tangents Podcast: https://scishow-tangents.simplecast.com/
TikTok: / scishow.
Twitter: / scishow.
Instagram: / thescishow.
Facebook: / scishow.

Omega Centauri: A Galaxy Core Frozen in Time Reveals Its Black Hole

Researchers have confirmed the presence of an intermediate-mass black hole in the core of Omega Centauri, a cluster that once formed the heart of a separate galaxy. This finding enhances our understanding of black hole evolution and galaxy dynamics. (Artist’s concept.) Credit: SciTechDaily.com.

Researchers confirmed an intermediate-mass black hole in Omega Centauri’s center, supporting theories of its origin as a distinct galaxy core merged with the Milky Way.

Newly identified fast-moving stars in the star cluster Omega Centauri provide solid evidence for a central black hole in the cluster. With at least 8,200 solar masses, it is the best candidate for a class of black holes astronomers have long believed to exist: intermediate-mass black holes, formed in the early stages of galaxy evolution. The discovery bolsters the case for Omega Centauri as the core region of a galaxy that was swallowed by the Milky Way billions of years ago. Stripped of its outer stars, that galaxy nucleus has remained “frozen in time” since then. The study has been published in the journal Nature.

Why Humanity Needs Science, not Religion | Carl Sagan

Discover Sagan’s unique blend of scientific curiosity and philosophical introspection, as he seamlessly navigates the realms of cosmology and the human condition.

If you would like to support my work financially, you can donate here:
/ twt_pc.
All contributions are greatly appreciated!

Follow us on Facebook \& Twitter:
/ pl.curious.
/ twtatheist.

Email:
[email protected].

Sources:
1. BBC Desert Island Disc (1981)
• Carl Sagan — His Best Interview (1981)
2. Carl Sagan on The Tonight Show with Johnny Carson (1977)
• Carl Sagan on The Tonight Show with J…
3. Carl Sagan’s Lecture: The Age of Exploration (1994)
• Carl Sagan’s 1994 \

Faster Than Light: New Dark Matter Findings Challenge Classical Physics

Dive into the world of tachyons, the elusive particles that might travel faster than light and hold the key to understanding dark matter and the universe’s expansion. Join us as we explore groundbreaking research that challenges our deepest physics laws and hints at a universe far stranger than we ever imagined. Don’t miss out on this thrilling cosmic journey!

Chapters:
00:00 Introduction.
00:39 Racing Beyond Light.
03:26 The Tachyon Universe Model.
05:57 Beyond Cosmology: Tachyons’ Broader Impact.
08:31 Outro.
08:44 Enjoy.

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.
Facebook: / nasaspacenews.
Twitter: / spacenewsnasa.

Join this channel to get access to these perks:
/ @nasaspacenewsagency.

#NSN #NASA #Astronomy#tachyons #fasterthanlight #darkmatter #universesecrets #cosmicacceleration #theoreticalphysics #Einsteintheory #supernovae #spacemysteries #cosmology #particlephysics #lightspeed #universeexpansion #sciencebreakthroughs #physicsexplained #futuretechnologies #spaceexploration #cosmos #astrophysics #modernphysics #sciencerevolution #relativitytheory #speedoflight #spacetime #universetheory #quantumphysics #energyphysics #newscience #cosmicphenomena #physicsresearch

Astronomers see a Massive Black Hole Awaken in Real Time

In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory’s Very Large Telescope (ESO’s VLT), to track how the galaxy’s @brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy – likely the result of the sudden awakening of the massive black hole at its core.

“Imagine you’ve been observing a distant galaxy for years, and it always seemed calm and inactive,” says Paula Sánchez Sáez, an astronomer at ESO in Germany and lead author of the study accepted for publication in Astronomy & Astrophysics. “Suddenly, its [core] starts showing dramatic changes in brightness, unlike any typical events we’ve seen before.” This is what happened to SDSS1335+0728, which is now classified as having an ‘active galactic nucleus’ (AGN) — a bright compact region powered by a massive black hole — after it brightened dramatically in December 2019 [1].

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before, pointing astronomers towards a different explanation.

Investigating the Origins of the Crab Nebula

A team of scientists used NASA’s James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. With the telescope’s MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera), the team gathered data that is helping to clarify the Crab Nebula’s history.

The Crab Nebula is the result of a core-collapse supernova from the death of a massive star. The supernova explosion itself was seen on Earth in 1,054 CE and was bright enough to view during the daytime. The much fainter remnant observed today is an expanding shell of gas and dust, and outflowing wind powered by a pulsar, a rapidly spinning and highly magnetized neutron star.

The Crab Nebula is also highly unusual. Its atypical composition and very low explosion energy previously have been explained by an electron-capture supernova — a rare type of explosion that arises from a star with a less-evolved core made of oxygen, neon, and magnesium, rather than a more typical iron core.

Cosmic Microwave Background (CMB) Explained | Cosmology 101 Episode 2

Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, takes us on journey through time by exploring the cosmic microwave background (CMB), the faint glow from the Big Bang.

The CMB shows us the universe as it was 13.8 billion years ago, revealing secrets about its…


In this episode of Cosmology 101, we journey through time by exploring the cosmic microwave background (CMB), the faint glow from the Big Bang.
The CMB shows us the universe as it was 13.8 billion years ago, revealing secrets about its origins and composition. Discover how this ancient light provides insights into the early universe and helps us understand the cosmos we see today.

Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, on an incredible journey through the cosmos in our new series, Cosmology 101.

Sign up for our newsletter and download exclusive cosmology posters at: https://landing.perimeterinstitute.ca