Toggle light / dark theme

Messengers from the Dark Age

The universe might have started with a bang, but once the echoes faded it took quite some while until the symphony began. Between the creation of the cosmic microwave background (CMB) and the formation of the first stars, 100 million years passed in darkness. This “dark age” has so far been entirely hidden from observation, but this situation is soon to change.

Read more

Stephen Hawking: Black Holes Have ‘Hair’

Black holes may sport a luxurious head of “hair” made up of ghostly, zero-energy particles, says a new hypothesis proposed by Stephen Hawking and other physicists.

The new paper, which was published online Jan. 5 in the preprint journal arXiv, proposes that at least some of the information devoured by a black hole is stored in these electric hairs.

Still, the new proposal doesn’t prove that all the information that enters a black hole is preserved.

Read more

It’s possible that there is a “mirror universe” where time moves backwards, say scientists

Although we experience time in one direction—we all get older, we have records of the past but not the future—there’s nothing in the laws of physics that insists time must move forward.

In trying to solve the puzzle of why time moves in a certain direction, many physicists have settled on entropy, the level of molecular disorder in a system, which continually increases. But two separate groups of prominent physicists are working on models that examine the initial conditions that might have created the arrow of time, and both seem to show time moving in two different directions.

When the Big Bang created our universe, these physicists believe it also created an inverse mirror universe where time moves in the opposite direction. From our perspective, time in the parallel universe moves backward. But anyone in the parallel universe would perceive our universe’s time as moving backward.

Read more

New theory of secondary inflation expands options for avoiding an excess of dark matter

A new theory from physicists at the U.S. Department of Energy’s Brookhaven National Laboratory, Fermi National Accelerator Laboratory, and Stony Brook University, which will publish online on January 18 in Physical Review Letters, suggests a shorter secondary inflationary period that could account for the amount of dark matter estimated to exist throughout the cosmos.

“In general, a fundamental theory of nature can explain certain phenomena, but it may not always end up giving you the right amount of dark matter,” said Hooman Davoudiasl, group leader in the High-Energy Theory Group at Brookhaven National Laboratory and an author on the paper. “If you come up with too little dark matter, you can suggest another source, but having too much is a problem.”

Measuring the amount of dark matter in the universe is no easy task. It is dark after all, so it doesn’t interact in any significant way with ordinary matter. Nonetheless, gravitational effects of dark matter give scientists a good idea of how much of it is out there. The best estimates indicate that it makes up about a quarter of the mass-energy budget of the universe, while ordinary matter — which makes up the stars, our planet, and us — comprises just 5 percent. Dark matter is the dominant form of substance in the universe, which leads physicists to devise theories and experiments to explore its properties and understand how it originated.

Read more

Superluminous Supernova Are a New, Strange Way for Stars to Die

An international team of astrophysicists has discovered the brightest supernova yet, briefly blazing fifty times brighter than the entire Milky Way galaxy. It’s a strange new way for stars to die.

As described in a new paper in Science, this spectacularly extravagant stellar explosion— part of a classification known as super luminous supernovae —may give us a peek into the death of stars from near the beginning of the Universe, helping unravel the secrets of early stellar evolution. It’s been named ASAS-SN-15lh.

Humans have been spotting the suddenly-bright pinpricks of stars violently exploding in the night sky for thousands of years, with some records even telling of the rapid appearance and disappearance of stars so bright they can be seen by the naked eye even during in the day. Superluminous supernova kick it up a notch, shining a hundred to a thousand times brighter than a normal nova.

Read more

Stephen Hawking just published a new solution to the black hole information paradox

Last year, British theoretical physicist Stephen Hawking hinted at research he and a couple of colleagues were working on that could solve the infamous black hole information paradox, which states that information about matter that gets destroyed by a black hole, according to Einstein’s general theory of relativity, is supposed to be fundamentally conserved, according to our understanding of quantum mechanics.

Now, that paper has finally been posted online, and as hinted by Hawking back in August, the solution to this paradox could be black hole ‘hairs’ that form on the event horizon, making a kind of two-dimensional holographic imprint of whatever’s been sucked in. He says the existence of these hairs is provable, and their existence could win him a Nobel Prize.

But let’s back up a bit, because there’s a lot to wrap your head around here.

Read more

How to Teleport Info Out of a Black Hole

Many folks often ask “What’s next for technology after Quantum?” Many suggests space, some folks suggest some sort of vNext technology or science that hasn’t been identified or fully discovered, etc. It truly is something that many of us have been asking ourselves for the past few years. However, there is still so much that still needs to be experimented with in ragards to Quantum; including teleporting information via Quantum from a black hole. And, what and how will this type of experiment improve our own usage of Quantum in the future.


The information that can be extracted from this hypothetical black hole is quantum information, meaning that instead of existing in either a 0 or 1 state, like a classical bit, the data collected would exist as a superposition of all potential states.

“We’ve demonstrated concretely that it is possible, in principle, to retrieve some quantum information from a black hole,” said study co-author Adam Jermyn, a doctoral candidate at the University of Cambridge in England. [The 9 Biggest Unsolved Mysteries in Physics]

But don’t go tossing your computer into the nearest black hole just yet. The amount of information that can be retrieved is tiny — just one quantum bit, or qubit. What’s more, getting that bit would likely mean sacrificing the possibility of retrieving other quantum information from the black hole, the researchers reported in October 2015 in the preprint journal arXiv.

Read more

/* */