Toggle light / dark theme

Results could aid understanding of how black holes produce vast intergalactic jets. Scientists have observed new details of how plasma interacts with magnetic fields, potentially providing insight into the formation of enormous plasma jets that stretch between the stars.

Whether between galaxies or within doughnut-shaped fusion devices known as tokamaks, the electrically charged fourth state of matter known as plasma regularly encounters powerful magnetic fields, changing shape and sloshing in space. Now, a new measurement technique using protons, subatomic particles that form the nuclei of atoms, has captured details of this sloshing for the first time, potentially providing insight into the formation of enormous plasma jets that stretch between the stars.

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) created detailed pictures of a magnetic field bending outward because of the pressure created by expanding plasma. As the plasma pushed on the magnetic field, bubbling and frothing known as magneto-Rayleigh Taylor instabilities arose at the boundaries, creating structures resembling columns and mushrooms.

And could entire civilizations seek to leave this reality behind?

Watch my exclusive video Exploring The Multiverse: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Check out https://www.johnmsmart.com to learn more about Transcension Hypothesis.

Visit our Website: http://www.isaacarthur.net.

I find it weird that black holes would be moving throughout the galaxy because most are stationary.


A fluffy cluster of stars spilling across the sky may have a secret hidden in its heart: a swarm of over 100 stellar-mass black holes.

The star cluster in question is called Palomar 5. It’s a stellar stream that stretches out across 30,000 light-years, and is located around 80,000 light-years away.

Such globular clusters are often considered ‘fossils’ of the early Universe. They’re very dense and spherical, typically containing roughly 100,000 to 1 million very old stars; some, like NGC 6397, are nearly as old as the Universe itself.

A star wiggling oddly around in space may be the signpost to one of the most sought-after objects in the galaxy.

Some 5,825 light-years from Earth, a red giant star has been spotted moving as though in a slow orbital dance with a binary companion. The problem? There’s absolutely no light coming from the place where the binary companion should be.

It gets more interesting. Based on the behavior of the red giant, astronomers led by Song Wang of the Chinese Academy of Sciences have determined that the mass of the invisible object is just 3.6 times the mass of the Sun. There’s only one thing it could be: a black hole, one with a petite size that’s smack bang in the middle of a mysterious void in the data known as the lower mass gap.

Nobel Laureate Roger Penrose joins Brian Greene to explore some of his most iconic insights into the nature of time, black holes, and cosmological evolution.

Moderator: Brian Greene.
Participant: Sir Roger Penrose.

00:00 — Introduction.
00:49 — Participant Introduction.
02:02 — A Working Definition of Time.
07:25 — Applying Entropy and The Second Law to the Directionality of Time.
16:37 — What The Early Universe May Have Looked Like.
20:27 — Solving the Puzzle of The Past Hypothesis.
31:46 — Investigating Exponential Expansion.
38:50 — New Discoveries and Discourse Since 2004
55:41 — A Peek Into Sir Roger Penrose’s Continuing Research.
01:08:17 — Credits.

- SUBSCRIBE to our youtube channel and \.

The Dark Matter is built with incredibly complex technology. “Raxial Thrust” is a new term coined to describe the way the Dark Matter engine works. “Raxial” is a portmanteau of “radial” and “axial”. Typically, electric motors use one or the other. Radial motors have the magnetic coils of the electric motor perpendicular to the axis of its rotation. Axial motors are built with flux parallel to the rotation. Both have advantages and disadvantages.

Radial are typically easier to build and maintain, but axial are smaller and can create more power by weight and volume. Koenigsegg has figured out a way to do both in one motor. Since they do not have to show us the inside of their Dark Matter, we don’t exactly understand how they’ve done this, but clearly, it is effective in generating power and torque. Despite this, the motor does not actually revolve at a very high rate. The website shows a max RPM of 8,500.

Koenigsegg makes use of its own battery packs. It doesn’t build the cells from the ground up, but it creates the system that actually delivers the power to the car. For the Gemera, it has created batteries that have dielectric oil (an insulator that will prevent unwanted electrical reactions) funneled directly into them as a cooling system. Most batteries on EVs now use airflow systems directly attached to the battery to cool them, but Koenigsegg has gone for a liquid approach instead. If it’s effective, it may become a more widespread approach to battery cooling technology.

Gravitational-wave signals from black hole mergers could reveal the presence of “gravitational atoms”—black holes surrounded by clouds of axions or other light bosons.

Subrahmanyan Chandrasekhar famously stated that black holes are “the most perfect macroscopic objects there are in the Universe: The only elements in their construction are our concepts of space and time.” His observation relates to the fact that astrophysical black holes, as described by the Kerr spacetime, can be characterized by just two parameters: mass and spin. However, things might get more complex. Theorists have predicted that if a bosonic field interacts with a Kerr black hole, perturbations in the field can grow to form a cloud around the black hole, creating a “gravitational atom,” in which the bosons surrounding the black hole behave somewhat like the electrons surrounding an atomic nucleus [1] (Fig. 1). What’s more, if such a gravitational atom is part of a binary involving a second black hole, excitations and ionization processes akin to those occurring in hydrogen atoms may affect how the black hole binary evolves.

In 1971, English mathematical physicist and Nobel-prize winner Roger Penrose proposed how energy could be extracted from a rotating black hole. He argued that this could be done by building a harness around the black hole’s accretion disk, where infalling matter is accelerated to close to the speed of light, triggering the release of energy in multiple wavelengths.

Since then, multiple researchers have suggested that advanced civilizations could use this method (the Penrose Process) to power their civilization and that this represents a technosignature we should be on the lookout for.

Examples include John M. Smart’s Transcension Hypothesis, a proposed resolution to the Fermi Paradox where he suggested advanced intelligence may migrate to the region surrounding black holes to take advantage of the energy available.