Toggle light / dark theme

Scientists have been searching for “dark matter” – an unknown and invisible substance thought to make up the vast majority of matter in the universe – for nearly a century. The reason for this persistence is that dark matter is needed to account for the fact that galaxies don’t seem to obey the fundamental laws of physics. However, dark matter searches have remained unsuccessful.

But there are other approaches to make sense of why behave so strangely. Our new study, published in the Journal of Cosmology and Astroparticle Physics, shows that, by tweaking the laws of gravity on the enormous scales of galaxies, we may not actually need dark after all.

The Swiss astronomer Fritz Zwicky discovered in the 1930s that velocities in galaxy clusters were too high to account for how much matter we could see. A similar phenomenon was described by several groups of astronomers, such as Vera Rubin and Kent Ford, when they studied the motion of stars at the far edges of the Andromeda Galaxy.

Read more

Dark energy is apparently even more mysterious than astronomers had thought.

Scientists first proposed the existence of this invisible force two decades ago, to explain the surprising discovery that the universe’s expansion is accelerating. (Surprising and incredibly important; the find netted three researchers the Nobel Prize in physics in 2011.)

The most-used astrophysical model of the universe’s structure and evolution regards dark energy as a constant. Indeed, many astronomers believe it to be the cosmological constant, which Einstein posited in 1917 as part of his theory of general relativity. [The History & Structure of the Universe in Pictures].

Read more

For the first time, researchers have documented the long-predicted occurrence of ‘walls bound by strings’ in superfluid helium-3. The existence of such an object, originally foreseen by cosmology theorists, may help explaining how the universe cooled down after the Big Bang. With the newfound ability to recreate these structures in the lab, earth-based scientists finally have a way to study some of the possible scenarios that might have taken place in the early universe more closely.

Read more

Much as a ripple in a pond reveals a thrown stone, the existence of the mysterious stuff known as dark matter is inferred via its wider cosmic influence. Astronomers cannot see it directly, but its gravity sculpts the birth, shape and movement of galaxies. This makes a discovery from last year all the more unexpected: a weirdly diffuse galaxy that seemed to harbor no dark matter at all.

Read more

The Big Bang didn’t just result in our familiar universe, according to a mind-bending new theory — it also generated a second “anti-universe” that extended backwards in time, like a mirror image of our own.

A new story in Physics World explores the new theory, which was proposed by a trio of Canadian physicists who say that it could explain the existence of dark matter.

The new theory, which is laid out in a recent paper in the journal Physical Review of Letters, aims to preserve a rule of physics called CPT symmetry. In the anti-universe before the Big Bang, it suggests, time ran backwards and the cosmos were made of antimatter instead of matter.

Read more

Astronomers have announced that they have gathered new data on the black hole that lies at the center of our galaxy. The new information was gleaned when the scientists added the ALMA telescope into the array of telescopes being used to study the black hole. The discovery has found that the emissions from the supermassive black hole, called Sagittarius A (Sgr A), comes from a smaller region than previously believed.

Read more

CERN has revealed plans for a gigantic successor of the giant atom smasher LHC, the biggest machine ever built. Particle physicists will never stop to ask for ever larger big bang machines. But where are the limits for the ordinary society concerning costs and existential risks?

CERN boffins are already conducting a mega experiment at the LHC, a 27km circular particle collider, at the cost of several billion Euros to study conditions of matter as it existed fractions of a second after the big bang and to find the smallest particle possible – but the question is how could they ever know? Now, they pretend to be a little bit upset because they could not find any particles beyond the standard model, which means something they would not expect. To achieve that, particle physicists would like to build an even larger “Future Circular Collider” (FCC) near Geneva, where CERN enjoys extraterritorial status, with a ring of 100km – for about 24 billion Euros.

Experts point out