Toggle light / dark theme

What lies ahead in the aftermath of the Technological Singularity? Could the latest scientific breakthroughs refine our theological understanding? Do we live in a simulated multiverse? Are we alone in the universe? Can we achieve cybernetic immortality? When and by what means might we transcend our human condition? These profound inquiries are at the core of this enlightening volume.

#Theogenesis #CyberneticTheoryofMind #posthumanism #consciousness #evolution #cybernetics #theosophy #futurism #SyntellectHypothesis #PhilosophyofMind #QuantumCosmology #ComputationalPhysics #PressRelease #NewBookRelease #AudibleAudiobook #AmazonKindle


Ecstadelic Media Group releases THEOGENESIS: Transdimensional Propagation & Universal Expansion, The Cybernetic Theory of Mind series by Alex M. Vikoulov as an Audible audiobook in addition to a previously released Kindle eBook (Press Release, Burlingame, CA, USA, December 21, 2024 07.17 AM PST)

The mystery of dark matter could be solved in as little as 10 seconds.

When the next nearby supernova goes off, any gamma-ray telescope pointing in the right direction might be treated to more than a light show – it could quickly confirm the existence of one of the most promising dark matter candidates.

Astrophysicists at the University of California, Berkeley predict that within the first 10 seconds of a supernova, enough hypothetical particles called axions could be emitted to prove they exist in a relative blink.

String theory remains our best candidate for a theory of everything, but where can it be tested? By studying black holes, says Marika Taylor.

As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.

But University of Michigan researchers have discovered that the rate at which these large structures grow is slower than predicted by Einstein’s Theory of General Relativity.

They also showed that as dark energy accelerates the universe’s global expansion, the suppression of the cosmic structure growth that the researchers see in their data is even more prominent than what the theory predicts. Their results are published in Physical Review Letters.

Could Our Universe Have Been Born from a Black Hole?

Black holes are among the most mysterious and fascinating objects in the universe, known for their powerful gravitational pull that nothing can escape. Interestingly, if you were to compress all the matter in the universe into a single point, you would create a black hole roughly the size of the universe itself. While we do not live inside a black hole, the similarities between black holes and our universe raise intriguing questions about their connection.

Event horizons: no escape in both cases.

An international team of astronomers has reported the discovery of a new pulsar, which received the designation PSR J1631–4722. The newfound pulsar, which is young and energetic, turns out to be associated with a supernova remnant known as SNR G336.7+0.5. The finding was detailed in a research paper published Dec. 16 on the arXiv pre-print server.

Pulsars are highly magnetized, rotating emitting a beam of electromagnetic radiation. They are usually detected in the form of short bursts of radio emission; however, some of them are also observed via optical, X-ray and gamma-ray telescopes.

Pulsars directly associated with known remnants (SNRs) are generally rare as only dozens of such objects have been discovered to date. Finding these associations is crucial for astronomers as they could shed more light on pulsar formation history and supernova explosion mechanisms.

A glowing galaxy not far from the Milky Way has been harboring a strange, puzzling secret at its core.

In the center of NGC 5,084, some 80 million light-years away, the supermassive black hole around which the whole galaxy revolves has been discovered tipped over on its side, with its rotational axis parallel to the galactic plane.

It’s a bit like the Uranus of black holes, and astronomers are uncertain how it could have gotten that way – especially since the evidence suggests that it wasn’t always oriented as it is in our current observations.