Toggle light / dark theme

Could the Higgs Boson Lead Us to Dark Matter?

For more information please go ➼ https://nordvpn.com/spacetime.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

The discovery of the Higgs boson ten years ago in the Large Hadron Collider was the culmination of decades of work and the collaboration of 1000s of brilliant and passionate people. It was the final piece needed to confirm the standard model of particle physics as it now stands. There are still many outstanding questions — for example, it seems like nothing in the standard model can explain what dark matter is. So the discovery of the Higgs wasn’t the end of particle physics — but it may be the way forward. Many physicists think that the secret to finding the elusive dark matter particle will come by studying the Higgs. In fact, the first tantalizing evidence is already in.

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!

Fast Neutron Reactor — Safe Power for the Future with Roger Blomquist, PhD USN Ret

Plentiful, safe, energy that burns up nuclear waste as fuel could be provided as soon as we build these reactor, There is no excuse for us freezing this winter! Watch and learn. Share widely to get the word out!

Worm-hole generators by the pound mass: https://greengregs.com/

For gardening in your Lunar habitat GalacticGregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K
Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

Scientists think they have found a solution to one of the oldest problems in the universe

It’s one of the oldest problems in the universe: Since matter and antimatter annihilate each other on contact, and both forms of matter existed at the moment of the big bang, why is there a universe made primarily of matter rather than nothing at all? Where did all the antimatter go?

“The fact that our current-day universe is dominated by matter remains among the most perplexing, longstanding mysteries in modern physics,” University of California, Riverside professor of physics and astronomy Yanou Cui said in a statement shared this week. “A subtle imbalance or asymmetry between matter and antimatter in the early universe is required to achieve today’s matter dominance but cannot be realized within the known framework of fundamental physics.”

There are theories that might answer that question, but they are extremely to difficult to test using laboratory experiments. Now, in a new paper published Thursday in the journal Physical Review Letters, Dr Cui and her co-author, Zhong-Zhi Xianyu, assistant professor of physics at Tsinghua University, China, explain they may have found a work around using the afterglow of the big bang itself to run the experiment.

What are black holes?

They’re among the most interesting astronomical bodies but also one of the most misunderstood. In this video, Fermilab’s Don Lincoln debunks some common misconceptions about black holes and also explains some important truths.

Leonard Susskind Marrying Quantum Physics & General Relativity

American physicist, professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics, Leonard Susskind, explains black holes, quantum physics, general relativity and how they are intertwined.

Knowing how the laws of physics behave at the extremes of space and time, near a black hole, is an important piece of the puzzle we must obtain if we are to understand how the universe works. Leonard Susskind explains how general relativity and quantum mechanics are related.

There are four fundamental forces at work in the universe: the strong force, the weak force, the electromagnetic force, and the gravitational force. They work over different ranges and have different strengths. Gravity is the weakest but it has an infinite range.

Three of the four fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory. The current understanding of the fourth force, gravity, is based on Albert Einstein’s general theory of relativity, which is formulated within the entirely different framework of classical physics. However, that description is incomplete.

According to Susskind, quantum gravitational effects are extremely weak and therefore difficult to test.

Leonard Susskind and his colleges of theoretical physicists have forged a connection between wormholes in spacetime and a quantum phenomenon called entanglement. This could help physicists reconcile Einstein’s general theory of relativity and quantum mechanics.

YouTube: Are we rethinking the Big Bang?

On this explainer, Neil deGrasse Tyson and comic co-host Chuck Nice break down Big Bang skepticism and what’s going on at the frontier of astrophysics.

What are the core tenets of the Big Bang Theory? We explore the frontier of scientific research and what ideas are being contested. We also walk through the scientific process and experimentations. Could the Big Bang just be a small piece of a bigger theory? Learn about Vulcan, the hypothetical planet pulling on Mercury that was invented to save Newton’s Laws. When Einstein’s relativity came along, why didn’t Newtonian physics go away?

Get the NEW Cosmic Queries book (5÷5 ⭐s on Amazon!): https://amzn.to/3dYIEQF

Support us on Patreon: https://www.patreon.com/startalkradio.

FOLLOW or SUBSCRIBE to StarTalk:
Twitter: http://twitter.com/startalkradio.
Facebook: https://www.facebook.com/StarTalk.
Instagram: https://www.instagram.com/startalk.

About StarTalk:

Voxengo plugin developer says he’s broken into “some ‘backdoor’ in mathematics itself” that proves that the universe has a ‘creator’

Vaneev posits that: “‘intelligent impulses’ or even ‘human mind’ itself (because a musician can understand these impulses) existed long before the ‘Big Bang’ happened. This discovery is probably both the greatest discovery in the history of mankind, and the worst discovery (for many) as it poses very unnerving questions that touch religious grounds.”

The Voxengo developer sums up his findings as follows: “These results of 1-bit PRVHASH say the following: if abstract mathematics contains not just a system of rules for manipulating numbers, but also a freely-defined fixed information that is also ‘readable’ by a person, then mathematics does not just ‘exist’, but ‘it was formed’, because mathematics does not evolve (beside human discovery of new rules and patterns). And since physics cannot be formulated without such mathematics, and physical processes clearly obey these mathematical rules, it means that a Creator/Higher Intelligence/God exists in relation to the Universe. For the author personally, everything is proven here.”

Vaneev says that he wanted to “share my astonishment and satisfaction with the results of this work that took much more of my time than I had wished for,” but that you don’t need to concern yourself too much with his findings if you don’t want to.”

Astronomers discover new brown dwarf with quasi-spherical mass loss

Astronomers report the detection of a new brown dwarf as part of the Ophiuchus Disk Survey Employing ALMA (ODISEA) program. The newfound object, designated SSTc2d J163134.1–24006, appears to be experiencing a quasi-spherical mass loss. The discovery was detailed in a paper published September 2 on the arXiv pre-print repository.

Brown dwarfs are intermediate objects between planets and stars, occupying the mass range between 13 and 80 Jupiter masses (0.012 and 0.076 ). They can burn deuterium but are unable to burn regular hydrogen, which requires a minimum mass of at least 80 Jupiter masses and a core temperature of about 3 million K.

A team of led by Dary Ruiz-Rodriguez of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, have investigated SSTc2d J163134.1–24006, initially identified as a faint stellar object, under the ODISEA project, which is dedicated to study the entire population of protoplanetary disks in the Ophiuchus Molecular Cloud. They found that SSTc2d J163134.1–24006 is most likely a brown dwarf with a mass of about 0.05 solar masses, and an elliptical shell of carbon monoxide (CO).