Toggle light / dark theme

If there was a wormhole in the center of our galaxy, how could we tell? Two physicists propose that carefully watching the motions of a star orbiting the Milky Way’s supermassive black hole might help scientists start to check. The researchers published the idea in a recent paper in the journal Physical Review D.

A wormhole is a hypothetical concept that connects two separate areas of space-time. Wormholes often appear in science fiction narratives like the 2014 film Interstellar as a convenient way to get from point A to point B in the vast universe. Physicists have many theories that describe how wormholes might behave, if they exist, but haven’t yet found any.

Every time you take a step, space itself glows with a soft warmth.

Called the Fulling–Davies–Unruh effect (or sometimes just Unruh effect if you’re pushed for time), this eerie glow of radiation emerging from the vacuum is akin to the mysterious Hawking radiation that’s thought to surround black holes.

Only in this case, it’s the product of acceleration rather than gravity.

Here’s how over 300 astronomers captured the dazzling first image of Sagittarius A*, and why it matters.


Our team was part of the global Event Horizon Telescope (EHT) Collaboration, which has used observations from a worldwide network of eight radio telescopes on our planet — collectively forming a single, Earth-sized virtual telescope — to take the stunning image. The breakthrough follows the collaboration’s 2019 release of the first-ever image of a black hole, called M87*, at the center of the more distant Messier 87 galaxy.

Black holes: Looking into darkness

The team observed Sagittarius A* on multiple nights, collecting data for many hours in a row, similar to using a long exposure time on a camera. Although we cannot see the black hole itself, because it is completely dark, glowing gas around it reveals a tell-tale signature: a dark central region (called a “shadow”) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun. The discovery also yields valuable clues about the workings of black holes, which are thought to reside at the center of most galaxies.

“Some of them are beautiful — they show up like harp-shaped strings next to each other,” says Farhad Yusef-Zadeh, an astrophysicist at Northwestern University who led a recent study published in The Astrophysical Journal Letters on the strands.

But researchers are still unsure about the cause of these features in the cosmos. “The big question is: What is the origin of these filaments?” Yusef-Zadeh says. “The puzzle is still there and the mystery continues.”

One hypotheses suggests they might be related to the black hole at the center of the Milky Way, which was captured in an image for the first time ever this week.