Toggle light / dark theme

A physicist from the University of Campinas in Brazil isn’t a big fan of the idea that time started with a so-called Big Bang. So Instead, Juliano César Silva Neves imagines a collapse followed by a sudden expansion, one that could even still carry the scars of a previous timeline.

Updated version of the previous article.

The idea itself isn’t new, but Neves has used a fifty-year-old mathematical trick describing black holes to show how our Universe needn’t have had such a compact start to existence. At first glance, our Universe doesn’t seem to have a lot in common with black holes. One is expanding space full of clumpy bits; the other is mass pulling at space so hard that even light has no hope of escape. But at the heart of both lies a concept known as a singularity – a volume of energy so infinitely dense, we can’t even begin to explain what’s going on inside it.

Today, one of the biggest paradoxes in the universe threatens to unravel modern science: the black hole information paradox. Every object in the universe is composed of particles with unique quantum properties and even if an object is destroyed, its quantum information is never permanently deleted. But what happens to that information when an object enters a black hole? Fabio Pacucci investigates. [Directed by Artrake Studio, narrated by Addison Anderson, music by WORKPLAYWORK / Cem Misirlioglu].

Richard Gott, co author with Neil De Grasse Tyson of “Welcome to The Universe” argues the key to understanding the origin of the universe may be the concept of closed time like curves. These are solutions to Einstein’s theory that may allow time travel into the past. in this film, Richard Gott of Princeton University explains the model he developed with LIxin Li. Gott explores the possibility of a closed time like curve forming in the early universe and how this might lead to the amazing property of the universe being able to create itself. Gott is one of the leading experts in time travel solution to Einstein’s equations and is author of the book “Time Travel In Einstein’s Universe”.
This film is part of a series of films exploring competing models of th early universe with the creators of those models. We have interviewed Stephen Hawking, Roger Penrose, Alan Guth and many other leaders of the field. To see other episodes, click on the link below:

We would like to thank the following who helped us are this movie:
Animations:
Morn 1415
David Yates.
NASA
ESA
M Buser, E Kajari, and WP Schleich.
Storyblocks.
Nina McCurdy, Anthony Aguirre, Joel Primack, Nancy Abrams.
Pixabay.
Ziri Younsi.

Audio & music from:
Shutterstock.
Audio Network.
Photography Rob, Speakers Corner Uk.
https://www.youtube.com/channel/UCpx7TeFcveBzrUB4I1Fc9iQ/vid…_polymer=1

Thanks to:
University College London.
Princeton University Press.
Howard Walwyn Fine Antique Clocks.

Timeline:
00:00 Introduction.
1:07 Working with Penzias and Wilson.
1:42 relativity and time.
2:58 the block universe.
4:00 time travel in Einstein’s universe.
4:54 Godel and time travel into the past.
5:54 Cosmic Strings.
7:43 Cosmic inflation.
8:50 Bubble Universes.
9:56 Lixin Li.
12:11 The Gott Li self creating universe model.
14:17 Jinn Particles.
14:35 How to escape a time loop.
16:14 Experimental test.
20:05 Hawking’s Chronology Protection Conjecture.
23:46 The Arrow of Time.
29:00 The Second Law.
33:00 Answering Hiscock’s criticisms.
40:07 fine tuning.
40:46 Boltzmann Brains.
44:37 Quantum Entanglement and Wormholes.
46:04 Uncertainty.
47:11 A Universe from Nothing.
50:25 Summing Up

Our universe may be fundamentally unstable. In a flash, the vacuum of space-time may find a new ground state, triggering a cataclysmic transformation of the physics of the universe.

Or not. A new understanding inspired by string theory shows that our universe may be more stable than we previously thought.

Within the first microseconds of the Big Bang, the universe underwent a series of radical phase transitions. The four forces of nature — electromagnetism, gravity, the strong nuclear force and the weak nuclear force — were at one time unified into a single force. Physicists do not know the character or nature of this force, but they do know that it didn’t last long.

But black holes do have gravity, and they know how to use it. If a black hole has a stellar companion, and they orbit each other closely enough, the former can strip some of the gas from the star. The gas falling into the black hole heats up and shines in high-energy radiation. Astronomers have found more than 50 such systems in the Milky Way.

However, when a black hole and its companion star orbit each other at a greater distance, the star remains whole. The black hole is then dormant and much more challenging to spot. To find it, one has to search for wobbling stars whose peculiar motion could be due to an unseen dark companion.

This is how a team of astronomers discovered the newest black hole candidate, which they call Gaia BH1. (The study, which is under review, is available here). Although it isn’t the first proposed candidate of its kind, it seems to be the most compelling to date.

Preview of NASA’s Double Asteroid Redirection Test, or DART, the first asteroid deflection mission.

Worm-hole generators by the pound mass: https://greengregs.com/

For gardening in your Lunar habitat Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K
Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.