Toggle light / dark theme

An Enormous Cosmological Simulation Wraps Up, Recreating Even More of the Universe

There’s an old joke among astronomy students about a question on the final exam for a cosmology class. It goes like this: “Describe the Universe and give three examples.” Well, a team of researchers in Germany, the U.S., and the UK took a giant leap toward giving at least one accurate example of the Universe.

To do it, they used a set of simulations called “MillenniumTNG”. It traces the buildup of galaxies and cosmic structure across time. It also provides new insight into the standard cosmological model of the Universe. It’s the latest in cosmological simulations, joining such ambitious efforts as the AbacusSummit project of a couple of years ago.

This simulation project takes into account as many aspects of cosmic evolution as possible. It uses simulations of regular (baryonic) matter (which is what we see in the Universe). It also includes dark matter, neutrinos, and the still-mysterious dark energy on the formation mechanisms of the Universe. That’s a tall order.

China Just Admitted They’ve Launched Something So Advanced That It Will Change Everything

China’s state media Xinhua claims that at least 300,000 people have worked on China’s space projects, almost 18 times the number of employees NASA has. Yes, the space race between the United States and China is set for a new and exciting turn, as the latter is geared to challenge the James Webb Space telescope with its fleet of tiny satellites, as they dive into deep space.#nasa #china #space Join Lab360 to get access to some amazing perks:

https://www.youtube.com/channel/UCZYqWTQJzJaMW7jFG16p8ug/joinSubscribe:

http://bit.ly/1V77IUhWelcome to Lab 360! The ultimate destination for the latest space news and space documentaries from the world of astronomy and astrophysics. Stay updated with all the current discoveries from NASA, James Webb Space Telescope, along with easily explained videos on black holes, asteroids, galaxies, planets, and more.

You will also find a collection of easy-to-perform experiments that will feed the science enthusiast in you! Are you ready?

Is the end of the ‘particle era’ of physics upon us?

The discovery of the Higgs Boson in 2012 represented a major turning point for particle physics marking the completion of what is known as the standard model of particle physics. Yet, the standard model can’t answer every question in physics, thus, since this discovery at the Large Hadron Collider (LHC) physicists have searched for physics beyond the standard model and to determine what shape future physics will take.

A paper in The European Physical Journal H by Robert Harlander and Jean-Philippe Martinez of the Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Germany, and Gregor Schiemann from the Faculty of Humanities and Cultural Studies, Bergische Universität Wuppertal, Germany, considers the idea that particle physics may be on the verge of a new era of discovery and understanding in particle physics. The paper also considers the implications of the many possible scenarios for the future of high-energy physics.

“Over the last century, the concept of the particle has emerged as fundamental in the field of physics,” Martinez said. “It has undergone a significant evolution across time, which has opened up new ways for particle observation, and thus for the discovery of new particles. Currently, observing a particle requires its on-shell production.”

Astronomers Break the “BOAT” — Decoding the Mystery of the Universe’s Brightest Explosion

Last year, telescopes around the world registered the brightest cosmic explosion of all time. Astrophysicists can now explain what made it so dazzling.

Few cosmic explosions have attracted as much attention from space scientists as the one recorded on October 22 last year and aptly named the Brightest of All Time (BOAT). The event, produced by the collapse of a highly massive star and the subsequent birth of a black hole.

A black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.

Using a detector the size of a galaxy, astronomers find strongest evidence yet for gravitational waves from supermassive black hole pairs

When black holes and other enormously massive, dense objects whirl around one another, they send out ripples in space and time called gravitational waves. These waves are one of the few ways we have to study the enigmatic cosmic giants that create them.

Astronomers have observed the high-frequency “chirps” of colliding black holes, but the ultra-low-frequency rumble of supermassive black holes orbiting one another has proven harder to detect. For decades, we have been observing pulsars, a type of star that pulses like a lighthouse, in search of the faint rippling of these waves.

Today, pulsar research collaborations around the world – including ours, the Parkes Pulsar Timing Array – announced their strongest evidence yet for the existence of these waves.

Elon Musk Says Universe May Be Twice as Old as We Think, Dark Matter Seems “Sketch”

Elon Musk, the omnipotent ruler of the Twitterverse, has chimed in and has decreed that the actual physical universe is “possibly” twice as old as we think it is.

Make of that what you will.

Musk was responding to noted misinformation peddler and comedian Joe Rogan, who linked to a press release about a controversial new paper that indeed suggests the universe could be 26.7 billion years old, almost twice as the general consensus among scientists.

Unusual type of stellar object discovered beaming out radio waves

Astronomers have discovered a new type of stellar object that could change their understanding of extreme celestial bodies in the universe.

Initially, Curtin University doctoral student Tyrone O’Doherty spotted a spinning celestial space object in March 2018. The unfamiliar object released giant bursts of energy and beamed out radiation three times per hour.

In those moments, it became the brightest source of radio waves viewable from Earth through radio telescopes, acting like a celestial lighthouse.

New computer simulations follow the formation of galaxies and cosmic large-scale structure with precision

York University and an international team of astrophysicists have made an ambitious attempt to simulate the formation of galaxies and cosmic large-scale structure throughout staggeringly large swaths of space.

First results of their MillenniumTNG project are published in a series of 10 articles in the journal Monthly Notices of the Royal Astronomical Society. The new calculations help to subject the standard cosmological model to precision tests and to unravel the full power of upcoming new cosmological observations, say the researchers including York Assistant Professor Rahul Kannan.

In recent decades, cosmologists have gotten used to the perplexing conjecture that the universe’s matter content is dominated by enigmatic dark matter and that an even stranger dark energy field that acts as some kind of anti-gravity to accelerate the expansion of today’s cosmos. Ordinary baryonic matter makes up less than five percent of the cosmic mix, but this source material forms the basis for the stars and planets of galaxies like our own Milky Way.

JWST Just Detected Carbon in The Cosmic Dawn… Before We Thought Carbon Was Possible

EMBARGO Wednesday 19 July 1,600 BST | 1,500 GMT | Thursday 20 July 100 AEST

Back when the Universe was still just a wee baby Universe, there wasn’t a lot going on chemically. There was hydrogen, with some helium, and a few traces of other things. Heavier elements didn’t arrive until stars had formed, lived, and died.

Imagine, therefore, the consternation of scientists when, using the James Webb Space Telescope to peer back into the distant reaches of the Universe, they discovered significant amounts of carbon dust, less than a billion years after the Big Bang.

Time Flowed Five Times Slower Shortly after the Big Bang

“For decades Isaac Newton gave us this vision of a universe where space and time is fixed, and every clock across the universe ticks at exactly the same rate. Then Einstein shattered this vision by proposing that time is actually rubbery and relative,” says Geraint Lewis, an astrophysicist at the University of Sydney and lead author of the study. “Now we’ve shown that Einstein was, once again, correct.”

The Einsteinian concept of time running slower in the early universe arose in the late 1920s as astronomers were discovering cosmic expansion. Galaxies in the sky were found to be flying away from the Milky Way at high speed, swept along by the ceaselessly growing void—and the farther off they were, the faster they flew. This not only meant that the universe was once much smaller and denser—arising in a “big bang” from some compact, primordial point—but also that the most distant galaxies visible to us should be receding at close to the speed of light.

According to Einstein’s special and general theories of relativity, both circumstances alter the flow of time. As light from one of those far-distant galaxies travels from the heavier gravitational grip of the deep, dense early cosmos and across the continuously expanding universe, it must traverse increasingly greater expanses of space to reach Earth. Consequently, time becomes stretched in a phenomenon known as time dilation: a clock running 10 billion years ago would tick at a normal rate to an observer from that time, but from the perspective of someone today, it would appear to be ticking much slower.

/* */