Toggle light / dark theme

Black holes are bizarre things, even by the standards of astronomers. Their mass is so great, it bends space around them so tightly that nothing can escape, even light itself.

And yet, despite their famous blackness, some black holes are quite visible. The gas and stars these galactic vacuums devour are sucked into a glowing disc before their one-way trip into the hole, and these discs can shine more brightly than entire galaxies.

Stranger still, these black holes twinkle. The brightness of the glowing discs can fluctuate from day to day, and nobody is entirely sure why.

How to make a black hole.
New videos DAILY: https://bigth.ink.
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.

There’s more than one way to make a black hole, says NASA’s Michelle Thaller. They’re not always formed from dead stars. For example, there are teeny tiny black holes all around us, the result of high-energy cosmic rays slamming into our atmosphere with enough force to cram matter together so densely that no light can escape.

CERN is trying to create artificial black holes right now, but don’t worry, it’s not dangerous. Scientists there are attempting to smash two particles together with such intensity that it creates a black hole that would live for just a millionth of a second.

Thaller uses a brilliant analogy involving a rubber sheet, a marble, and an elephant to explain why different black holes have varying densities. Watch and learn!

Bonus fact: If the Earth became a black hole, it would be crushed to the size of a ping-pong ball.

MICHELLE THALLER:

Results from a complex new analysis support cosmologists’ suspicions that something is missing from our understanding of the universe.

For the most part, our standard theory of cosmology fits observations like a glove. With just a handful of ingredients, scientists can explain the patchy pattern of the cosmic microwave background (CMB) — the relic radiation from the universe’s primordial age — and how the nearly uniform soup it came from transformed into the Swiss cheese of galaxy clusters and cosmic voids we see today.

But some nagging problems remain. The most touted is the Hubble tension, a discrepancy between how fast the universe appears to be expanding today and how fast it “should” be expanding, based on what we see in the early universe. But there’s another, more subtle discrepancy: Today’s universe is too smooth.

When dying stars explode as supernovae, they usually eject a chaotic web of dust and gas. But a new image of a supernova’s remains looks completely different — as though its central star sparked a cosmic fireworks display. It is the most unusual remnant that researchers have ever found, and could point to a rare type of supernova that astronomers have long struggled to explain.

“I have worked on supernova remnants for 30 years, and I’ve never seen anything like this,” says Robert Fesen, an astronomer at Dartmouth College in Hanover, New Hampshire, who imaged the remnant late last year. He reported his findings at a meeting of the American Astronomical Society on 12 January and posted them in a not-yet-peer-reviewed paper on the same day.

O.o! If the universe is some sorta hologram then this could be a clue to our actual reality.


Last December, the Nobel Prize in Physics was awarded for experimental evidence of a quantum phenomenon that has been known for more than 80 years: entanglement. As envisioned by Albert Einstein and his collaborators in 1935, quantum objects can be mysteriously correlated even when separated by great distances. But as strange as the phenomenon may seem, why is such an old idea still worthy of the most prestigious award in physics?

Coincidentally, just weeks before the new Nobel laureates were honored in Stockholm, another team of respected scientists from Harvard, MIT, Caltech, Fermilab and Google reported that they ran a process on Google’s quantum computer that could be interpreted as a wormhole. Wormholes are tunnels through the universe that can function as a shortcut through space and time and are loved by science fiction fans, and although the tunnel realized in this latest experiment only exists in a two-dimensional toy universe, it could be a breakthrough for the future represent research at the forefront of physics.

But why does entanglement have to do with space and time? And how can it be important for future breakthroughs in physics? Properly understood, entanglement means that the universe is what philosophers call “monistic,” that is, at the most fundamental level, everything in the universe is part of a single, unified whole. It is a defining property of quantum mechanics that its underlying reality is described in terms of waves, and a monistic universe would require universal functioning. Decades ago, researchers such as Hugh Everett and Dieter Zeh showed how our everyday reality can emerge from such a universal quantum mechanical description. But it is only now that researchers such as Leonard Susskind and Sean Carroll are developing ideas as to how this hidden quantum reality could explain not only matter but also the structure of space and time.

A small team of astrophysicists affiliated with several institutions in China has found evidence that suggests if wormholes are real, they might magnify light by 100,000 times. In their paper published in the journal Physical Review Letters, the group describes the theories they have developed and possible uses for them.

Prior theoretical efforts have suggested that might exist in the , described as tunnels of a sort, connecting different parts of the universe. Some in the physics community have suggested that it may be possible to traverse such tunnels, allowing for faster-than-light travel across the universe. The researchers note that prior research has shown that black holes have such a strong gravitational pull that they are able to bend light, a phenomenon known as microlensing. They then wondered if wormholes, if they exist, also exhibit microlensing.

Proving that wormholes cause microlensing would, of course, involve first proving that wormholes exist. Still, the researchers suggest that and other theories could clarify whether the idea is even possible. In their work, they discovered that it was possible to calculate how an associated with a wormhole would warp the light passing by it. They also found theoretical evidence that wormhole would be similar to black hole lensing, which, they note, would make it difficult to tell the two apart.

Thanks to Scopely for sponsoring this video — Download Star Trek Fleet Command on iOS & Android and battle in the Star Trek universe here: https://pixly.go2cloud.org/SH3fA

Spacedock delves into a powerful but lesser known sci-fi space weapon.

THE SOJOURN — AN ORIGINAL SCI-FI AUDIO DRAMA:
https://www.thesojournaudiodrama.com/

BECOME A CHANNEL MEMBER:
https://www.youtube.com/channel/UCfjaAUlTZRHJapJmCT6eyIg/join.

SUPPORT SPACEDOCK:
https://www.patreon.com/officialspacedock?ty=h.

MERCHANDISE:

A stunning Hubble Space Telescope image shows the chaotic and densely packed stars of the globular cluster NGC 6355.

The globular cluster is located around 31,000 light-years from Earth in the inner region of the Milky Way — so deep into our galaxy that it is just 4,600 light-years from our galaxy’s central supermassive black hole, Sagittarius A*.

One of Stephen Hawking’s most famous ideas has been proven to be right thanks to the ripples in space-time that were caused when two black holes far away merged. Hawking got the black hole area theorem from Einstein’s theory of general relativity in 1971. It says that a black hole’s surface area can’t go down over time. The second law of thermodynamics says that the entropy, or disorder, of a closed system must always go up. This rule is important to physicists because it seems to tell time to go in a certain direction. Since a black hole’s entropy is related to its surface area, both must always go up.

According to the new study, the fact that the researchers confirmed the area law seems to show that the properties of black holes are important clues to the hidden laws that run the universe. Surprisingly, the area law seems to go against one of the famous physicist’s proven theorems, which says that black holes should evaporate over very long periods of time. This suggests that figuring out why the two theories don’t match up could lead to new physics.

“The surface area of a black hole can’t get smaller, which is similar to the second law of thermodynamics. It also has a conservation of mass, which is similar to the conservation of energy, said the lead author, an astrophysicist from the Massachusetts Institute of Technology named Maximiliano Isi. ” At first, people were like, ‘Wow, that’s a cool parallel,’ but we quickly figured out that this was very important. The amount of entropy in a black hole is equal to its size. It’s not just a funny coincidence; they show something important about the world.” The event horizon is the point beyond which nothing, not even light, can get away from a black hole’s strong gravitational pull. Hawking’s understanding of general relativity is that a black hole’s surface area goes up as its mass goes up. Since nothing that falls into a black hole can get out, its surface area can’t go down.