Toggle light / dark theme

An international team of astrophysicists including Princeton’s Andy Goulding has discovered the most distant supermassive black hole ever found, using two NASA space telescopes: the Chandra X-ray Observatory (Chandra) and the James Webb Space Telescope (JWST).

The black hole, which is an estimated 10 to 100 million times more massive than our sun, is 13.2 billion light-years away in the galaxy UHZ-1, which means the telescopes are peering back in time to when the universe was “extremely young,” Goulding said — only about 450 million years old.

“This is one of the most dramatic discoveries to come out of the James Webb Space Telescope” and the discovery of the most distant growing supermassive black hole known, said Michael Strauss, professor and chair of astrophysical sciences at Princeton, who discussed the findings with the researchers but was not part of the research team. “Indeed, it completely smashes the old record.”

European astronomers released the first images from the new Euclid space telescope last week.

The European Space Agency (ESA) and the U.S. space agency, NASA, designed Euclid to study dark matter and dark energy. Scientists think those hidden forms of matter and energy make up 95 percent of the universe.

ESA is leading the six-year mission with NASA as a partner. ESA said the images were the most detailed of their kind. They show the telescope’s ability to observe billions of galaxies up to 10 billion light years away.

A new way to simulate supernovae may help shed light on our cosmic origins. Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies. However, key aspects of them are notoriously difficult to simulate accurately in reasonably short amounts of time. For the first time, a team of researchers, including those from The University of Tokyo, apply deep learning to the problem of supernova simulation. Their approach can speed up the simulation of supernovae, and therefore of galaxy formation and evolution as well. These simulations include the evolution of the chemistry which led to life.

When you hear about deep learning, you might think of the latest app that sprung up this week to do something clever with images or generate humanlike text. Deep learning might be responsible for some behind-the-scenes aspects of such things, but it’s also used extensively in different fields of research. Recently, a team at a tech event called a hackathon applied deep learning to weather forecasting. It proved quite effective, and this got doctoral student Keiya Hirashima from the University of Tokyo’s Department of Astronomy thinking.

“Weather is a very complex phenomenon but ultimately it boils down to fluid dynamics calculations,” said Hirashima. “So, I wondered if we could modify deep learning models used for weather forecasting and apply them to another fluid system, but one that exists on a vastly larger scale and which we lack direct access to: my field of research, supernova explosions.”

The oldest known black hole — a 13.2 billion-year-old ‘behemoth’ — has been discovered by scientists.

NASA’s James Webb Space Telescope and Chandra X-Ray Observatory spent the past year working together to find and confirm the black hole and on Monday, researchers published their findings which confirmed beliefs that supermassive black holes existed at the start of the universe.

They believe the newly-located black hole was formed just 470 million years after the Big Bang and is 10 times larger than the black hole in the Milky Way.

“There is a whole new discussion at least posing the question of the carbon footprint of particle physics.”

A particle collider, sometimes referred to as an atom smasher, is a type of high-energy physics apparatus used to investigate the fundamental particles and forces that exist in the cosmos. Subatomic particles, such as protons, electrons, or other charged particles, are accelerated to extremely high speeds and collide at extremely high energies in particle colliders.

Scientists use them to study the core components of matter and the fundamental forces of existence such as the nature of dark matter, the properties of quarks and leptons as well as the strong nuclear force, the weak nuclear… More.


Emilio Nanni/SLAC National Accelerator Laboratory.

A new study reveals that supermassive black holes at the centers of galaxies, known as quasars, can sometimes be obscured by dense clouds of gas and dust in their host galaxies.

This challenges the prevailing idea that quasars are only obscured by donut-shaped rings of dust in the close vicinity of the black hole.

Quasars are extremely bright objects powered by gorging on surrounding material. Their powerful radiation can be blocked if thick clouds come between us and the quasar.

The European Space Agency (ESA) has just released the first full-color images captured by its groundbreaking Euclid space telescope. These stunning images are part of the mission’s Early Release Observations, which showcase the telescope’s ability to capture razor-sharp astronomical views across a vast expanse of the sky.

Unlike any telescope before it, Euclid is able to capture high-resolution images of the cosmos, revealing cosmic secrets waiting to be uncovered. These captivating images provide a glimpse into the vastness and beauty of our universe.

Euclid’s main objective is to create the most comprehensive 3D map of the universe ever recorded. Over its six-year mission, the telescope will generate an immense amount of data, equivalent to a million DVDs. This massive amount of data will be crucial in unraveling the mysteries surrounding dark matter and dark energy.

Astronomers are currently pushing the frontiers of astronomy. At this very moment, observatories like the James Webb Space Telescope (JWST) are visualizing the earliest stars and galaxies in the universe, which formed during a period known as the “Cosmic Dark Ages.” This period was previously inaccessible to telescopes because the universe was permeated by clouds of neutral hydrogen.

As a result, the only light is visible today as relic radiation from the Big Bang—the (CMB)—or as the 21 cm spectral line created by the reionization of hydrogen (aka the Hydrogen Line).

Now that the veil of the Dark Ages is being slowly pulled away, scientists are contemplating the next frontier in astronomy and cosmology by observing “primordial ” created by the Big Bang. In recent news, it was announced that the National Science Foundation (NSF) had awarded $3.7 million to the University of Chicago, the first part of a grant that could reach up to $21.4 million. The purpose of this grant is to fund the development of next-generation telescopes that will map the CMB and the gravitational waves created in the immediate aftermath of the Big Bang.

How did we get here? Not just we humans, scrabbling about on a pale blue dot, hurtling around a star, hurtling around a supermassive black hole, hurtling through the local cluster. But how did the dot get here, and the star, and the black hole, and the cluster?

How did the incomprehensibly immense everything of it all get to where it is now, from an unimaginable nothing, billions of years ago?

That’s it, really, the question of questions. And, with the largest project of its kind to date, astronomers are attempting to find answers – by conducting computer simulations of the entire Universe.