Toggle light / dark theme

Quantum Algorithms and Their Discontents

Interesting read; however, the author has limited his view to Quantum being only a computing solution when in fact it is much more. Quantum technology does offer faster processing power & better security; but, Quantum offers us Q-Dots which enables us to enrich medicines & other treatments, improves raw materials including fuels, even vegetation.

For the first time we have a science that cuts across all areas of technology, medical & biology, chemistry, manufacturing, etc. No other science has been able to achieve this like Quantum.

Also, the author in statements around being years off has some truth if we’re suggesting 7 yrs then I agree. However, more than 7 years I don’t agree especially with the results we are seeing in Quantum Networking.

Not sure of the author’s own inclusion on some of the Quantum Technology or Q-Dot experiements; however, I do suggest that he should look at Quantum with a broader lens because there is a larger story around Quantum especially in the longer term as well look to improve things like BMI, AI, longevity, resistent materials for space, etc/.


I recently read Seth Lloyd’s A Turing Test for Free Will — conveniently related to the subject of the blog’s last piece, and absolutely engrossing. It’s short, yet it makes a wonderful nuance in the debate over determinism, arguing that predictable functions can still have unpredictable outcomes, known as “free will functions.”

I had thought that the world only needed more funding, organized effort, and goodwill to solve its biggest threats concerning all of humanity, from molecular interactions in fatal diseases to accessible, accurate weather prediction for farmers. But therein lies the rub: to be able to tackle large-scale problems, we must be able to analyze all the data points associated to find meaningful recourses in our efforts. Call it Silicon Valley marketing, but data analysis is important, and fast ways of understanding that data could be the key to faster solution implementation.

Quantum physicists turn to the dark state

“Suppose you want to travel from Helsinki to New York and you have to change your flight in London,” explains Sorin Paraoanu. “Normally you would first fly on a plane from Helsinki to London, then wait for some time in the airport in London, then board the flight London-New York. But in the quantum world, you would be better off boarding a plane from Helsinki to London sometime after the flight London-New York took off. You will not spend any time in London and you will arrive in New York right at the time when the plane from Hesinki lands in London.” This is mind-boggling but the experiment shows that it is indeed happening.

Besides the relevance for quantum computing, the result also has deep conceptual implications. Much of our understanding of the reality is based on the so-called continuity principle: the idea that influences propagate from here to there by going through all the places in-between. Real objects don’t just appear somewhere from nothing. But the experiment seems to defy this. Like in a great show of magic, quantum physics allows things to materialize here and there, apparently out of nowhere.

The team would like to acknowledge the excellent scientific environment created in the Low Temperature Laboratory (part of OtaNano) at the Department of Applied Physics.

Portland firm DARPA research could make disputes like Apple v FBI obsolete

Portland computer science research company Galois snagged a $6.2 million grant from the Department of Defense for a project that, if successful, could make the current battle between the FBI and tech giant Apple obsolete.

The three-year research contract comes from the Defense Advanced Research Projects Agency and will fund research into quantifying privacy preservation systems.

‘Can you quantify how private a system is or isn’t and can you make a judgment about it,’ said Galois CEO Rob Wiltbank,…

Dx3 to Demonstrate How Artificial Intelligence Is the Future of Retail Innovations Like Pepper the Robot to Debut at Annual Tech Conference

Still not sold on the whole robotics at this point; still not at the level where it needs from a multi-functional capability state plus still too jerky and most are more like a CPU on wheels.


TORONTO, ON –(Marketwired — February 23, 2016) — ­­ Astro Boy may be a fictional character, but Pepper the Robot is its real-­world incarnation. Pepper –­­ the world’s first humanoid robot –­­ will join exhibitors like MasterCard, Fluid, Vizera and Eyris, as they interact with industry experts as part of The Retail Collective Lab, sponsored by MasterCard, at this year’s Dx3 Trade Show and Conference.

FlexEnable has created a screen you can wrap around your wrist

Sometimes, it seems like the tech world is inexorably bending towards a future full of curved devices. At MWC in Barcelona, we saw yet another prototype display, this time from English firm FlexEnable. Now, this isn’t a working device of any kind — it’s essentially just a screen running a demo — and neither is FlexEnable a consumer electronics company. But the firm says its technology is ready to go, and it’s apparently in talks with unnamed hardware partners who want to make this sort of device a reality. How long until we see fully-fledged wristbands like this on the market? Eighteen months is the optimistic guess from FlexEnable’s Paul Cain.

The prototype uses plastic transistors to achieve its flexibility, creating what the company calls OLCD (organic liquid crystal display) screens. FlexEnable says these can achieve the same resolutions as regular LCD using the same amount of power, but, of course, they have that added flexibility. These transistors can be wrapped around pretty much anything, and also have uses outside of display technology. FlexEnable was also showing off thin flexible fingerprint sensors, suggesting they could be wrapped around a door handle to add security without it being inconvenient to the user.

The prototype we saw at MWC was encased in a stiff metal frame, like a lot of flexible displays, and although OLCD can flex a little, it’s not the sort of material you can endlessly bend and crease. That, says, Cain, will have to wait for flexible OLED displays, a technology that is going to need more development. Still, we are seeing truly flexible OLED prototypes popping up here and there, such as this device from Queen’s University, which lets you flex a screen to flick through the pages of a digital book. The future bends ever closer.

/* */