Toggle light / dark theme

A team of researchers at Columbia University has developed a way to allow DNA strands to store more data. In their study, published in the journal Science, the group applied a small amount of electricity to DNA strands to allow for encoding more information than was possible with other methods.

For several years, researchers have been looking for ways to increase data storage capacity—storage requirements are expected to exceed capacity in the near future as demand skyrockets. One such approach has involved encoding data into strands of DNA—prior research has shown that it is possible. In the early stages of such research, scientists manually edited strands to add characteristics to represent zeroes or ones. More recently, researchers have used the CRISPR gene editing tool. Most such studies used DNA extracted from the tissue of deceased animals. More recently, researchers have begun efforts to move the research to living animals because it will last longer. And not just in the edited strands—the information they contain could conceivably be passed on to offspring, allowing data to be stored for very long periods of time.

Back in 2017, another team at Columbia University used CRISPR to detect a certain signal—in their case, it was the presence of sugar molecules. Adding such molecules resulted in gene expressions of plasmid DNA. Over time, the editing process was improved as genetic bits were added to represent ones and zeroes. Unfortunately, the system only allowed for storing a few bits of data.

“This is perhaps the hardest part of all DNA storage approaches. If you can get the cells to directly talk to a computer, and interface its DNA-based memory system with a silicon-based memory system, then there are lots of possibilities in the future.”

The work builds on a CRISPR-based cellular recorder Wang had previously designed for E. coli bacteria, which detects the presence of certain DNA sequences inside the cell and records this signal into the organism’s genome.

The system includes a DNA-based “sensing module” that produces elevated levels of a “trigger sequence” in response to specific biological signals. These sequences are incorporated into the recorder’s “DNA ticker tape” to document the signal.

Chipmakers often place orders with contract manufacturers instead of fabricating chips in-house. It takes time to manufacture semiconductors while reconfiguring lines to accommodate varying specifications, making it difficult to turn out different chips at the same time.


TOKYO — The auto industry is facing a severe lack of semiconductors amid rising use of the chips in other products, like smartphones and communication base stations.

This has forced Germany’s Volkswagen as well as Japanese makers like Honda and Nissan to reduce production.

Toyota Motor has decided to reduce production of its Tundra pickup truck at its plant in the U.S. state of Texas due to the semiconductor shortage. The company has not released details on the size or time frame regarding the production cut but is looking into whether the lack of semiconductors will affect other vehicles.

While many research teams worldwide are trying to develop highly performing quantum computers, some are working on tools to control the flow of heat inside of them. Just like conventional computers, in fact, quantum computers can heat up significantly as they are operating, which can ultimately damage both the devices and their surroundings.

A team of researchers at University Grenoble Alpes in France and Centre of Excellence—Quantum Technology in Finland has recently developed a single-quantum-dot heat valve, a that can help to control the flow of heat in single-quantum-dot junctions. This heat valve, presented in a paper published in Physical Review Letters, could help to prevent quantum computers from overheating.

“With the miniaturization of electronic components handling of excess heat at nanoscales has become an increasingly important issue to be addressed,” Nicola Lo Gullo, one of the researchers who carried out the study, told Phys.org. “This is especially true when one wants to preserve the quantum nature of a device; the increase in temperature does typically result in the degradation of the quantum properties. The recent realization of a photonic heat-valve by another research group ultimately inspired us to create a heat valve based on a solid-state quantum dot.”

All the clean technologies that we need to combat climate change – whether that’s wind turbines, solar panels or batteries, they’re all really, really mineral intensive.


Cornwall, 1864. A hot spring is discovered nearly 450m (1485ft) below ground in the Wheal Clifford, a copper mine just outside the mining town of Redruth. Glass bottles are immersed to their necks in its bubbling waters, carefully sealed and sent off for testing. The result is the discovery of so great a quantity of lithium – eight or 10 times as much per gallon as had been found in any hot spring previously analysed – that scientists suspect “it may prove of great commercial value”.

But 19th-Century England had little need for the element, and this 50C (122F) lithium-rich water continued steaming away in the dark for more than 150 years.

Fast forward to autumn 2020, and a site nearby the Wheal Clifford in Cornwall has been confirmed as having some of the world’s highest grades of lithium in geothermal waters. The commercial use for lithium in the 21st Century could not be clearer. It is found not only inside smart phones and laptops, but is now vital to the clean energy transition, for the batteries that power electric vehicles and store energy so renewable power can be released steadily and reliably.

DARPA Looks to Light up Integrated Photonics with Chip-Scale Laser DevelopmentAgency announces performer teams selected for LUMOS program.

Like.

Comment.


First demonstrated sixty years ago, the laser has become an essential technology in today’s world. It has transformed diverse fields including communications, sensing, manufacturing, and medicine. More recently, innovations in integrated photonics have allowed the miniaturization of key optical components and the ability to arrange several elements on a single silicon chip. When combined with lasers, these photonic integrated circuits (PICs) have the potential to replace large and costly optical systems with chip-scale solutions. However, due to differences in the properties of the materials that compose them, lasers and PICs are difficult to combine onto the same platform, limiting the benefits of integration and preventing broad technology impact.

To address this challenge, DARPA developed the Lasers for Universal Microscale Optical Systems (LUMOS) program, which aims to bring high-performance lasers to advanced photonics platforms. As highlighted in the recent program kick-off meeting, LUMOS will address several commercial and defense applications by directing efforts across three distinct Technical Areas.

The first LUMOS Technical Area brings high-performance lasers and optical amplifiers into advanced domestic photonics manufacturing foundries. Two research teams were selected in this area: Tower Semiconductor and SUNY Polytechnic Institute. These performers will work to demonstrate flexible, efficient on-chip optical gain in their photonics processes to enable next-generation optical microsystems for communications, computing, and sensing. LUMOS technologies will be made available to future design teams through DARPA-sponsored multi-project wafer runs.

Would you like to capture a chemical transformation inside a cell live? Or maybe revolutionize microchips’ production by printing paths in a layer that has a thickness of just 100 nanometers? These and many other goals can now be achieved with the latest femtosecond laser created by a team of scientists led by Dr. Yuriy Stepanenko.

These days, there is a multitude of laser light sources. They each have their characteristics and different applications, such as observing stars, treating illnesses, and surface micro-machining. “Our goal is to develop new ones,” says Yuriy Stepanenko, head of the team of Ultrafast Laser Techniques at the Institute of Physical Chemistry of the Polish Academy of Sciences. “We deal with sources that produce ultrashort pulses of light. Really very, very short—femtosecond pulses (that’s a part of a second with 15 zeros after the decimal point). This is the scale on which, for example, intracellular chemical reactions take place. To see them, we have to ” take a photo” in this very short time. And thanks to the new laser, we can do just that.

We can also use our source for the very precise removal of materials from various surfaces without destroying them, says the scientist. We could, for example, clean the Mona Lisa using this method without damaging the layers of paint. We would only remove dust and dirt, a layer about 10 nanometers thick, explains Dr. Stepanenko, one of the authors of a study recently published in the Journal of Lightwave Technology.

Quantum entanglement is key for next-generation computing and communications technology, Aalto researchers can now produce it using temperature differences.

A joint group of scientists from Finland, Russia, China, and the USA have demonstrated that temperature difference can be used to entangle pairs of electrons in superconducting structures. The experimental discovery, published in Nature Communications, promises powerful applications in quantum devices, bringing us one step closer towards applications of the second quantum revolution.

The team, led by Professor Pertti Hakonen from Aalto University, has shown that the thermoelectric effect provides a new method for producing entangled electrons in a new device. “Quantum entanglement is the cornerstone of the novel quantum technologies. This concept, however, has puzzled many physicists over the years, including Albert Einstein who worried a lot about the spooky interaction at a distance that it causes,” says Prof. Hakonen.