Menu

Blog

Archive for the ‘computing’ category: Page 549

Jun 17, 2020

Elon Musk promises to have the Neuralink brain chip in a human this year

Posted by in categories: computing, Elon Musk, neuroscience

Elon Musk announced that his secretive brain-computer interface startup Neuralink is working on an “awesome” update of his brain implant technology.

Jun 16, 2020

Digitize your dog into a computer game

Posted by in categories: biotech/medical, computing, entertainment

Researchers from the University of Bath have developed motion capture technology that enables you to digitize your dog without a motion capture suit and using only one camera.

The software could be used for a wide range of purposes, from helping vets diagnose lameness and monitoring recovery of their canine patients, to entertainment applications such as making it easier to put digital representations of into movies and video games.

Motion capture technology is widely used in the , where actors wear a suit dotted with white markers which are then precisely tracked in 3D space by multiple cameras taking images from different angles. Movement data can then be transferred onto a digital character for use in films or computer games.

Jun 16, 2020

Quantum Satellite Links Extend More Than 1,000 Kilometers

Posted by in categories: computing, encryption, internet, quantum physics

Now, the same researchers have achieved their goal of entanglement-based quantum cryptography using the Micius satellite. The scientists, who detailed their findings online in the 15 June edition of the journal Nature, say they again connected two observatories separated by 1,120 kilometers. But this time, the collection efficiency of the links was improved by up to four-fold, which resulted in data rates of about 0.12 bits per second.


A space-based, virtually unhackable quantum Internet may be one step closer to reality due to satellite experiments that linked ground stations more than 1,000 kilometers apart, a new study finds.

Quantum physics makes a strange effect known as entanglement possible. Essentially, two or more particles such as photons that get linked or “entangled” can influence each other simultaneously no matter how far apart they are.

Continue reading “Quantum Satellite Links Extend More Than 1,000 Kilometers” »

Jun 15, 2020

Researchers create first room-temp ‘magnon switch’ with industrially useful properties

Posted by in categories: computing, materials

Scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) have demonstrated a potentially new way to make switches inside a computer’s processing chips, enabling them to use less energy and radiate less heat.

The team has developed a practical technique for controlling magnons, which are essentially waves that travel through and can carry information. To use magnons for information processing requires a switching mechanism that can control the transmission of a magnon signal through the device.

While other labs have created systems that carry and control magnons, the team’s approach brings two important firsts: Its elements can be built on silicon rather than exotic and expensive substrates, as other approaches have demanded. It also operates efficiently at room temperature, rather than requiring refrigeration. For these and other reasons, this new approach might be more readily employed by .

Jun 15, 2020

Newly observed phenomenon could lead to new quantum devices

Posted by in categories: computing, quantum physics

An exotic physical phenomenon known as a Kohn anomaly has been found for the first time in an unexpected type of material by researchers at MIT and elsewhere. They say the finding could provide new insights into certain fundamental processes that help determine why metals and other materials display the complex electronic properties that underlie much of today’s technology.

The way electrons interact with phonons—which are essentially vibrations passing through a —determines the that take place inside many electronic devices. These interactions affect the way metals resist electric current, the temperature at which some materials suddenly become superconductors, and the very low temperature requirements for quantum computers, among many other processes.

But electron-phonon interactions have been difficult to study in detail because they are generally very weak. The new study has found a new, stronger kind of unusual electron-phonon interaction: The researchers induced a Kohn , which was previously thought to exist only in metals, in an exotic material called a topological Weyl semimetal. The finding could help shed light on important aspects of the complex interplay between electrons and phonons, they say.

Jun 15, 2020

A quantum memory that operates at telecom wavelengths

Posted by in categories: computing, quantum physics

To create large quantum networks, researchers will first need to develop efficient quantum repeaters. A key component of these repeaters are quantum memories, which are the quantum-mechanical equivalents of more conventional computer memories, such as random-access memories (RAM).

Ideally, a quantum should be able to retain information for substantial periods of time, store true quantum states, read out data efficiently and operate at low-loss telecommunication wavelengths. While research teams have made great progress in the development of quantum memories, no solution proposed so far has been able to meet all of these requirements simultaneously.

With this in mind, researchers at Delft University of Technology (TU Delft) set out to develop a new mechanical quantum memory with sufficiently long storage times, a high readout efficiency, and the ability to operate at telecom wavelengths. The memory they devised, presented in a paper published in Nature Physics, could ultimately enable the practical implementation of mechanical systems with quantum effects developed in their previous works.

Jun 13, 2020

Carbon nanotube transistors make the leap from lab to factory floor

Posted by in categories: computing, nanotechnology

The next major revolution in computer chip technology is now a step closer to reality. Researchers have shown that carbon nanotube transistors can be made rapidly in commercial facilities, with the same equipment used to manufacture traditional silicon-based transistors – the backbone of today’s computing industry.

Jun 13, 2020

How decoding the brain can heal anxiety and restore sensations

Posted by in categories: biotech/medical, computing, neuroscience

While modern, scientific understanding of this complex network of neurons between our ears really only began in the last few decades, we’ve already learned a lot about the body’s control center — and have been given a lot to think about.

In this episode of The Abstract, we discuss the groundbreaking research in brain-computer technology offering new hope in restoring sensations and treating anxiety.

Our first story is about groundbreaking research in brain-computer interfaces that’s offering new hope for those who have lost their sense of touch. By decoding neural signals from the brain, researchers were able to create movement and sensory perception in paralyzed limbs. Innovations like these in sense-restoring technology could be life-changing for spinal cord patients and make a devastating loss of sensation reversible.

Jun 13, 2020

Discovering how the brain works through computation

Posted by in categories: computing, engineering, neuroscience

Accelerating progress in neuroscience is helping us understand the big picture—how animals behave and which brain areas are involved in bringing about these behaviors—and also the small picture—how molecules, neurons, and synapses interact. But there is a huge gap of knowledge between these two scales, from the whole brain down to the neuron.

A team led by Christos Papadimitriou, the Donovan Family Professor of Computer Science at Columbia Engineering, proposes a new computational system to expand the understanding of the brain at an intermediate level, between and cognitive phenomena such as language. The group, which includes computer scientists from Georgia Institute of Technology and a neuroscientist from the Graz University of Technology, has developed a brain architecture that is based on neuronal assemblies, and they demonstrate its use in the syntactic processing in the production of language; their model, published online June 9 in PNAS, is consistent with recent experimental results.

“For me, understanding the brain has always been a computational problem,” says Papadimitriou, who became fascinated by the brain five years ago. “Because if it isn’t, I don’t know where to start.”

Jun 13, 2020

Israeli researchers explain how they are healing the world with precision

Posted by in categories: biotech/medical, computing, health, information science

Data governs our lives more than ever. But when it comes to disease and death, every data point is a person, someone who became sick and needed treatment.

Recent studies have revealed that people suffering from the same disease category may have different manifestations. As doctors and scientists better understand the reasons underlying this variability, they can develop novel preventive, diagnostic and therapeutic approaches and provide optimal, personalized care for every patient.

To accomplish this goal often requires broadscale collaborations between physicians, basic researchers, theoreticians, experimentalists, computational biologists, computer scientists and data scientists, engineers, statisticians, epidemiologists and others. They must work together to integrate scientific and medical knowledge, theory, analysis of medical big data and extensive experimental work.

Continue reading “Israeli researchers explain how they are healing the world with precision” »