Toggle light / dark theme

Huawei hosted a Better World Summit recently in Dubai, that brought together telecom operators from around the world to share insights and discuss ways to achieve the objectives of 5G next-gen networks with environmental sustainability and reaching Net-Zero emissions.

Unlike predecessor technology, 5G is at least 10x faster at launch, unlocks many new use cases from edge computing and network slicing, to scaled IoT deployments not possible with 4G. GlobalData expects 5G services to exceed $USD 640 billion by 2026 and penetration will exceed 50 per cent.

There is a paradox. The rise in data traffic is increasing energy costs and carbon emissions. For example, if the average data traffic, per user, per month reaches 630 Gigabytes by 2030 (industry estimates) and if network efficiency stays the same, then the average power consumption from networks will also increase by at least 10-fold. This runs counter to the goals of the GSMA for Net-Zero by 2040 as well as many individual MNOs with their own ESG targets, often more ambitious than industry targets.

A team of physicists and engineers at Lawrence Berkeley National Laboratory (Berkeley Lab) successfully demonstrated the feasibility of low-cost and high-performance radio frequency modules for qubit controls at room temperature. They built a series of compact radio frequency (RF) modules that mix signals to improve the reliability of control systems for superconducting quantum processors. Their tests proved that using modular design methods reduces the cost and size of traditional RF control systems while still delivering superior or comparable performance levels to those commercially available.

Their research, featured as noteworthy in the Review of Scientific Instruments and selected as a Scilight by the American Institute of Physics, is and has been adopted by other quantum information science (QIS) groups. The team expects the RF modules’ compact design is suitable for adaptation to the other qubit technologies as well. The research was conducted at the Advanced Quantum Testbed (AQT) at Berkeley Lab, a collaborative research program funded by the U.S. Department of Energy’s Office of Science.

Cracked phone screens could become a thing of the past thanks to breakthrough research conducted at The University of Queensland.

The global team of researchers, led by UQ’s Dr Jingwei Hou, Professor Lianzhou Wang and Professor Vicki Chen, have unlocked the technology to produce next-generation composite glass for lighting LEDs and smartphone, television and computer screens.

The findings will enable the manufacture of glass screens that are not only unbreakable but also deliver crystal clear image quality.

UC Berkeley physicist Norman Yao first described five years ago how to make a time crystal—a new form of matter whose patterns repeat in time instead of space. Unlike crystals of emerald or ruby, however, those time crystals existed for only a fraction of a second.

But the time has arrived for time crystals. Since Yao’s original proposal, new insights have led to the discovery that time crystals come in many different forms, each stabilized by its own distinct mechanism.

Using new quantum computing architectures, several labs have come close to creating a many-body localized version of a time crystal, which uses disorder to keep periodically-driven quantum qubits in a continual state of subharmonic jiggling—the qubits oscillate, but only every other period of the drive.

By Jeremy Batterson 11-09-2021

The equivalent of cheap 100-inch binoculars will soon be possible. This memo is a quick update on seven rapidly converging technologies that augur well for astronomy enthusiasts of the near future. All these technologies already exist in either fully developed or nascent form, and all are being rapidly improved due to the gigantic global cell phone market and the retinal projection market that will soon replace it. Listed here are the multiple technologies, after which they are brought together into a single system.

1) Tracking.
2) Single-photon image sensing.
3) Large effective exit pupils via large sensors.
4) Long exposure non-photographic function.
5) Flat optics (metamaterials)
6) Off-axis function of flat optics.
7) Retinal projection.

1) TRACKING: this is already being widely used in so-called “go-to” telescopes, where the instrument will find any object and track it, so Earth’s rotation does not take the object viewed out of the field of vision. The viewer doesn’t have to find the object and doesn’t have to set up the clock drive to track it. Tracking is also partly used in image stabilization software for cameras and smart phones, to prevent motion blurring of images.

2) SINGLE-PHOTON IMAGE SENSORS, whether of the single-photon avalanching diode type, or the type developed by Dr. Fossum, will allow passive imaging in nearly totally dark environments, without the use of IR or other illumination. This new type of image sensor will replace the monochromatic analogue “night-vision” devices, allowing color imaging at higher resolution than they can produce. Unlike these current devices, such sensors will not be destroyed by being exposed to normal or high lighting. Effectively, these sensors increase the effective light-gathering power of a telescope by at least an order of magnitude, allowing small telescopes to see what observatory telescopes see now.

With a minimalistic design and H-shaped front panel, the new mtu hydrogen fuel cell is a complete solution for power supply in the megawatt range that will be produced in series from 2025. This modern-looking module will in the future deliver a net power output of around 150 kW – sufficient to power approximately ten homes. It can also be connected together into scalable fuel cell power plants with outputs in the megawatt range – capable of providing clean backup power for large data centers.

The fuel cell module is the result of collaboration between Rolls-Royce and cellcentric, a joint venture company set up by Daimler Truck AG and Volvo Group AB earlier this year. It is based on cellcentric’s fuel cell modules that emit nothing other than water vapor. This will enable CO2-free, climate-neutral generation of emergency power for data centers.

“Electrical generators based on fuel cells represent the next leap forward in the energy transition, both for our customers and us,” said Andreas Schell, CEO of Rolls-Royce Power Systems. “That’s why we’re investing a three-digit million amount in R&D over the next few years, and we hope that this strong commitment will encourage governments and politicians to promote and support this pioneering, extremely climate-friendly technology. When they run on green hydrogen, meaning hydrogen made using renewable energy sources, fuel cells are climate-neutral. For this reason, and also because we’re simply convinced by fuel cell technology, we also want to look into how green hydrogen can be produced cost-effectively in the quantities we need.”

Wireless sensing devices, tools that allow users to sense movements and remotely monitor activities or changes in specific environments, have many applications. For instance, they could be used for surveillance purposes as well as to track the sleep or physical activities of medical patients and athletes. Some videogame developers have also used wireless sensing systems to create more engaging sports or dance-related games.

Researchers at Florida State University, Trinity University and Rutgers University have recently developed Winect, a new wireless sensing system that can track the poses of humans in 3D as they perform a wide range of free-form physical activities. This system was introduced in a paper pre-published on arXiv and is set to be presented at the ACM Conference on Interactive, Mobile, Wearables and Ubiquitous Technologies (Ubi Comp) 2,021 one of the most renowned computer science events worldwide.

“Our research group has been conducting cutting-edge research in wireless sensing,” Jie Yang, one of the researchers who carried out the study, told TechXplore. “In the past, we have proposed several systems to use Wi-Fi signals to sense various human activities and objects, ranging from large-scale human activities, to small-scale finger movements, sleep monitoring and daily objects For example, we proposed two systems dubbed E-eyes and WiFinger, which are among the first work to utilize Wi-Fi sensing to distinguish various types of daily activity and finger gestures.”