Menu

Blog

Archive for the ‘computing’ category: Page 242

Nov 21, 2022

Discovery reveals ‘brain-like computing’ at molecular level is possible

Posted by in categories: computing, neuroscience, particle physics

A discovery at University of Limerick in Ireland has revealed for the first time that unconventional brain-like computing at the tiniest scale of atoms and molecules is possible.

Researchers at University of Limerick’s Bernal Institute worked with an international team of scientists to create a new type of organic material that learns from its past behavior.

The discovery of the “dynamic molecular switch” that emulates synaptic behavior is revealed in a new study in the journal Nature Materials.

Nov 21, 2022

Researchers control individual light quanta at very high speed

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

A team of German and Spanish researchers from Valencia, Münster, Augsburg, Berlin and Munich have succeeded in controlling individual light quanta to an extremely high degree of precision. In Nature Communications, the researchers report how, by means of a soundwave, they switch individual photons on a chip back and forth between two outputs at gigahertz frequencies. This method, demonstrated here for the first time, can now be used for acoustic quantum technologies or complex integrated photonic networks.

Light waves and soundwaves form the technological backbone of modern communications. While glass fibers with laser light form the World Wide Web, nanoscale soundwaves on chips process signals at gigahertz frequencies for wireless transmission between smartphones, tablets or laptops. One of the most pressing questions for the future is how these technologies can be extended to , to build up secure (i.e., tap-free) quantum communication networks.

“Light quanta or photons play a very central role in the development of quantum technologies,” says physicist Prof. Hubert Krenner, who heads the study in Münster and Augsburg. “Our team has now succeeded in generating on a chip the size of a thumbnail and then controlling them with unprecedented precision, precisely clocked by means of soundwaves,” he says.

Nov 21, 2022

Squishable computer runs calculations depending on how you squish it

Posted by in category: computing

A computer made using blocks of rubber with streaks of a rubber-silver compound performs simple calculations when squished.

Nov 21, 2022

What Makes Humans Different? A New Window Into the Brain

Posted by in categories: biotech/medical, computing, neuroscience

Researchers have discovered the human brain’s enhanced processing power may stem from differences in the structure and function of our neurons. Credit: Queensland Brain Institute / Professor Stephen Williams.

The human brain’s function is remarkable, driving all aspects of our creativity and thoughts. However, the neocortex, a region of the human brain responsible for these cognitive functions, has a similar overall structure to other mammals.

Researchers from The University of Queensland (UQ), The Mater Hospital, and the Royal Brisbane and Women’s Hospital have shown that changes in the structure and function of our neurons may be the cause of the human brain’s increased processing power.

Nov 21, 2022

A Life in Games

Posted by in categories: computing, mathematics

Gnawing on his left index finger with his chipped old British teeth, temporal veins bulging and brow pensively squinched beneath the day-before-yesterday’s hair, the mathematician John Horton Conway unapologetically whiles away his hours tinkering and thinkering — which is to say he’s ruminating, although he will insist he’s doing nothing, being lazy, playing games.

Based at Princeton University, though he found fame at Cambridge (as a student and professor from 1957 to 1987), Conway, 77, claims never to have worked a day in his life. Instead, he purports to have frittered away reams and reams of time playing. Yet he is Princeton’s John von Neumann Professor in Applied and Computational Mathematics (now emeritus). He’s a fellow of the Royal Society. And he is roundly praised as a genius. “The word ‘genius’ gets misused an awful lot,” said Persi Diaconis, a mathematician at Stanford University. “John Conway is a genius. And the thing about John is he’ll think about anything.… He has a real sense of whimsy. You can’t put him in a mathematical box.”

Nov 21, 2022

Apple Prepares to Get Made-in-US Chips in Pivot From Asia

Posted by in category: computing

Nov 21, 2022

New technique accurately measures how 2D materials expand when heated

Posted by in categories: computing, particle physics, solar power, sustainability

Two-dimensional materials, which consist of just a single layer of atoms, can be packed together more densely than conventional materials, so they could be used to make transistors, solar cells, LEDs, and other devices that run faster and perform better.

One issue holding back these next-generation electronics is the heat they generate when in use. Conventional electronics typically reach about 80 degrees Celsius, but the in 2D devices are packed so densely in such a small area that the devices can become twice as hot. This can damage the device.

This problem is compounded by the fact that scientists don’t have a good understanding of how 2D materials expand when temperatures rise. Because the materials are so thin and optically transparent, their thermal expansion coefficient (TEC)—the tendency for the material to expand when temperatures increase—is nearly impossible to measure using standard approaches.

Nov 21, 2022

Electronic/photonic chip sandwich pushes boundaries of computing and data transmission efficiency

Posted by in categories: computing, innovation

Engineers at Caltech and the University of Southampton in England have collaboratively designed an electronics chip integrated with a photonics chip (which uses light to transfer data)—creating a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat.

Though the two– sandwich is unlikely to find its way into your laptop, the new design could influence the future of data centers that manage very high volumes of data communication.

“Every time you are on a video call, stream a movie, or play an online video game, you’re routing data back and forth through a to be processed,” says Caltech graduate student Arian Hashemi Talkhooncheh, lead author of a paper describing the two-chip innovation that was published in the IEEE Journal of Solid-State Circuits on November 3.

Nov 20, 2022

Even a small nuclear war could cause global famine — here’s what the data shows

Posted by in categories: climatology, computing, existential risks, geopolitics, military, nuclear weapons, treaties

Nuclear arsenals remain large enough to fundamentally shift the Earth system in the blink of an eye.

The U.S. and Russia have recently agreed to hold talks on the New START Treaty, and the only accord left regulating the two largest nuclear arsenals in the world. While this is undoubtedly good news, we must not allow it to lull us into complacency. Global events this year, most notably in Ukraine, have raised fears of a nuclear conflict to levels not seen since the cold war. More than 10,000 nuclear warheads remain in the world, and the Kremlin’s language regarding weapons of mass destruction has become increasingly threatening in 2022.


Global famine and climate breakdown

Continue reading “Even a small nuclear war could cause global famine — here’s what the data shows” »

Nov 19, 2022

Canon on cusp of nanoimprint chip-making revolution

Posted by in categories: computing, nanotechnology

Canon is moving ahead with a plan to build a new factory in Japan to double the production of its semiconductor lithography equipment.

The planned facility will produce both the standard KrF and i-line machines that constitute the bulk of the division’s sales and the nanoimprint tools that Canon hopes will open a new era in semiconductor manufacturing.

Addressing investors after the announcement of third-quarter results in late October, Canon’s management referred to “our leading-edge nanoimprint lithography equipment.”