Toggle light / dark theme

Smart supramolecular assemblies: Researchers show how additives promote self-assembly of spherical microparticles

If you’ve ever opened a box from IKEA and wished the pieces inside could somehow spontaneously merge to form a table or chair, then a simple virus could have a thing or two to teach you. Self-assembly of complex molecules is essential for a wide array of biological structures, including proteins, cell membranes, or even entire viruses. Supramolecular chemistry is a field of study that attempts to build large molecules out of a discrete number of…

Loss of the Primal Eye, R.E.M as Phasic Transients, and the origins of Dreaming

NEW PAPER — Loss of the Primal Eye in evolution, REM explained as phasic transients, and the emergence of DREAMING in E1 animals. MA dissertation Philosophy, University of Leeds 1995/1996.


There are a number of reasons why dreaming has been, and remains, an important area to philosophy. Dreams are ‘pure’ experiential phenomena not (seemingly) requiring input from the outside world via the special senses. As Aristotle puts it, “If all creatures, when the eyes are closed in sleep, are unable to see, and the analogous statement is true of the other senses, so that manifestly we perceive nothing when asleep; we may conclude that it is not by sense-perception we perceive a dream”. A major part of this dissertation is concerned with issues raised in Owen Flanagan’s (1995) article, Deconstructing Dreams: The Spandrels of Sleep. The Primal Eye/MVT account of consciousness gives p-dreaming a more central explanatory role, and I argue that p-dreams are not epiphenomena in the way Flanagan claims. An important omission from Flanagan’s account is any discussion of important dreaming-related phenomena. I look at lucid dreaming, hypnosis and other mental phenomena in relation to the evolutionary loss of the primal/ median/ parietal eye, and postulate that REM rapid eye movements are ‘phasic transients’ considering the E1 brain which includes the lateral eyes, as a consciousness-producing circuit. A brief account of Primal Eye/ Median Vision Theory is that capacity for abstract/ centrally evoked mentation is a direct result of the evolutionary loss of the primal eye. E2 (earlier hardwired brains with both primal and lateral eyes) have evolved over millions of years into E1 brain circuits analog(ous to infinite-state) types of self-regulating plastic circuits, with no primal/pineal eye, but retaining lateral eyes and the pineal gland. Loss of this ‘lockstep mechanism’ median/primal/ parietal/pineal eye not only allowed new sleeping mental phenomena such as dreaming; but also heralded in new types of waking mental abstraction freed from E2 involuntary primal eye direct (electro-chemical) responses to changes in the physical environment. These include daydreams, visualisation with both lateral eyes closed, self-volition or self-determined choices, and so on.

See Full PDF

Researchers discover new way to make ‘atomic lasagna’

A research team discovered a method to transform materials with three-dimensional atomic structures into nearly two-dimensional structures – a promising advancement in controlling their properties for chemical, quantum, and semiconducting applications.

The field of materials chemistry seeks to understand, at an atomic level, not only the substances that comprise the world but also how to intentionally design and manufacture them. A pervasive challenge in this field is the ability to precisely control chemical reaction conditions to alter the crystal structure of materials—how their atoms are arranged in space with respect to each other. Controlling this structure is critical to attaining specific atomic arrangements that yield unique behaviors. This process results in novel materials with desirable characteristics for practical applications.

A team of researchers led by the National Renewable Energy Laboratory (NREL), with contributions from the Colorado School of Mines (Mines), National Institute of Standards and Technology, and Argonne National Laboratory, discovered a method to convert materials from their higher-energy (or metastable) state to their lower-energy, stable state while instilling an ordered and nearly two-dimensional arrangement of atoms—a feat that has the potential to unleash promising material properties.

Fluorescent nanomaterial could transform how we visualize fingerprints

Latent fingerprints require physicochemical development techniques to enhance their visibility and make them interpretable for forensic purposes. Traditional methods for developing fingerprints include optical, physical, and chemical processes that involve interaction between the developing agent (often a colored or fluorescent reagent) and the fingerprint residue. These methods have limitations in recovering high-quality results in certain conditions.

Recently, new methods using , spectroscopy, electrochemistry, and nanoparticles have improved the development of latent fingerprints. These techniques offer better contrast, sensitivity, and selectivity, with low toxicity. The ability to adjust nanomaterial properties further enhances the detection of both fresh and aged fingerprints.

Mesoporous silica nanoparticles (MSNs) have attracted significant interest since the discovery of the M41S family of molecular sieves, which encompasses MCM-41, MCM-48, and SBA-15. These nanoparticles are characterized by their controlled particle size, porosity, high specific surface area, chemical stability, and ease of surface functionalization.

Green hydrogen: MXenes shows talent as catalyst for oxygen evolution

The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.

The findings have been published in Journal of Materials Chemistry A (“Enhancing the Oxygen Evolution Reaction activity of CuCo based Hydroxides with V 2 CTx MXene”).

The surface of a vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules. (Image: B. Schmiedecke, HZB)

The Cellular Secret to Resisting the Pressure of the Deep Sea

The bottom of the ocean is cold, dark and under extreme pressure. It is not a place suited to the physiology of us surface dwellers: At the deepest point, the pressure of 36,200 feet of seawater is greater than the weight of an elephant on every square inch of your body. Yet Earth’s deepest places are home to life uniquely suited to these challenging conditions. Scientists have studied how the bodies of some large animals, such as anglerfish and blobfish, have adapted to withstand the pressure. But far less is known about how cells and molecules stand up to the squeezing, crushing weight of thousands of feet of seawater.

“The animals that live down in the deep sea are not ones that live in surface waters,” said Itay Budin, who studies the biochemistry of cell membranes at the University of California, San Diego. “They’re clearly biologically specialized. But we know very little, at the molecular level, about what is actually determining that specialization.”

In a recent study published in Science, researchers took the deepest look yet at how cells have adapted to life in the abyss. In 2018, Budin met Steve Haddock, a deep-sea biologist, and they combined forces to investigate whether cell membranes — specifically, the lipid molecules that membranes are made of — could help explain how animals have come to thrive in such a high-pressure environment.

New filtration system removes ‘forever chemicals’ from water

A breakthrough filtration system developed by MIT researchers offers hope for removing harmful “forever chemicals” — dangerous pollutants that have plagued water supplies globally for decades.

These long-lasting pollutants, known as PFAS, persist in the environment and have contaminated water sources worldwide.

A recent study by the U.S. Centers for Disease Control found that 98% of people tested had detectable levels of PFAS in their bloodstream, highlighting the severity of the contamination.

Finger wrap uses sweat to provide health monitoring at your fingertips

A sweat-powered wearable has the potential to make continuous, personalized health monitoring as effortless as wearing a Band-Aid. Engineers at the University of California San Diego have developed an electronic finger wrap that monitors vital chemical levels—such as glucose, vitamins, and even drugs—present in the same fingertip sweat from which it derives its energy.

The advance was published Sept. 3 in Nature Electronics by the research group of Joseph Wang, a professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at UC San Diego.

The device, which wraps snugly around the finger, draws power from an unlikely source—the fingertip’s . Fingertips, despite their , are among the body’s most prolific sweat producers, each packed with over a thousand . These glands can produce 100 to 1,000 times more sweat than most other areas of the body, even during rest.

Catalyst design boosts performance of anion-exchange-membrane fuel cells

Fuel cells are energy-conversion solutions that generate electricity via electrochemical reactions without combustion, thus not contributing to the pollution of air on Earth. These cells could power various technologies, ranging from electric vehicles to portable chargers and industrial machines.

Despite their advantages, many fuel cell designs introduced to date rely on expensive materials and precious metal catalysts, which limits their widespread adoption. Anion-exchange-membrane fuel cells (AEMFCs) could help to tackle these challenges, as they are based on Earth-abundant, low-cost catalysts and could thus be more affordable.

In recent years, many research groups worldwide have been designing and testing new AEMFCs. While some existing devices achieved promising results, most of the non-precious metals serving as catalysts were found to be prone to self-oxidation, which causes the irreversible failure of the cells.