Toggle light / dark theme

Interstellar Methane as Progenitor of Amino Acids?

Gamma radiation converts methane into glycine and other complex molecules. Gamma radiation can convert methane into a wide variety of products at room temperature, including hydrocarbons, oxygen-containing molecules, and amino acids, reports a research team in the journal Angewandte Chemie. This type of reaction probably plays an important role in the formation of complex organic molecules in the universe — and possibly in the origin of life. They also open up new strategies for the industrial conversion of methane into high value-added products under mild conditions.

With these research results, the team led by Weixin Huang at the University of Science and Technology of China (Hefei) has contributed to our fundamental understanding of the early development of molecules in the universe.

“Gamma rays, high-energy photons commonly existing in cosmic rays and unstable isotope decay, provide external energy to drive chemical reactions of simple molecules in the icy mantles of interstellar dust and ice grains,” states Huang.

Solar-Powered ‘Planimal’ Cells? Chloroplasts in Hamster Cells Make Food From Light

The ability of plants to convert sunlight into food is an enviable superpower. Now, researchers have shown they can get animal cells to do the same thing.

Photosynthesis in plants and algae is performed by tiny organelles known as chloroplasts, which convert sunlight into oxygen and chemical energy. While the origins of these structures are hazy, scientists believe they may have been photosynthetic bacteria absorbed by primordial cells.

Our ancestors weren’t so lucky, but now researchers from the University of Tokyo have managed to rewrite evolutionary history. In a recent paper, the team reported they had successfully implanted chloroplasts into hamster cells where they generated energy for at least two days via the photosynthetic electron transport process.

Hidden pocket in human bitter taste receptor discovered

A new study describes an exciting discovery that changes the way we understand human bitter taste receptors. The research has revealed a hidden “pocket” inside one of the body’s bitter taste receptors, called TAS2R14.

This breakthrough could help not only understand how our tongue senses bitterness but also investigate the physiological roles of bitter taste receptors that are expressed extraorally. The work is published in Nature Communications, and was led by Prof. Masha Niv from the Hebrew University of Jerusalem, Dr. Moran Shalev-Benami from the Weizmann Institute, and Dr. Dorothee Weikert from FAU Erlangen.

There are many chemically different molecules that trigger bitter taste sensations, and the body uses a family of 25 receptors to detect them. Interestingly, many drugs also activate this bitter taste system.

RSC Prizes

Have we got your #RSCPrizes nominations yet?

Our cover a huge range of contributions in the chemical sciences. If there’s someone you want to acknowledge, find the right prize for them and make them feel appreciated.

Nominate by 14 January ▶️ rsc.li/prizes


We have been recognising excellence in chemistry since 1869. Explore our, read more about our prize winners, and make a nomination today.

Spin-powered crystals dramatically improve water splitting process for clean hydrogen production

Water splitting—breaking water molecules into hydrogen and oxygen—is a promising pathway to sustainable energy. However, this process has long been challenged by the slow chemical kinetics of the oxygen evolution reaction that make hydrogen production inefficient and costly.

An international research team has now uncovered a solution. By using special crystals with unique intrinsic “chiral” structures—meaning they have a distinctive left or right-handed atomic arrangement—researchers have dramatically improved the water splitting process.

The findings are published in the journal Nature Energy.

Early adult binge drinking has lasting impact on aging brain in mice

In a new work, a team from the University of Pennsylvania tracked the impact of alcohol consumption from the age of 20 on brain health and came to disappointing conclusions.


UNIVERSITY PARK, Pa. — Binge drinking in early adults can lead to long-lasting and potentially permanent dysregulation in the brain, according to a new study in mice, led by researchers at Penn State. They found that neurons, cells that transmit information in the brain via electrical and chemical signals, showed changes following binge drinking were similar in many ways to those seen with cognitive decline.

These findings, published in the journal Neurobiology of Aging, reveal that binge drinking early in life may have lasting impacts that are predictive of future health issues, like Alzheimer’s disease and related dementias, the researchers said. The work could inform the development of therapeutics to help combat these changes — particularly in aging populations who may have given up alcohol decades earlier, according to Nikki Crowley, director of the Penn State Neuroscience Institute at University Park, Huck Early Career Chair in Neurobiology and Neural Engineering, assistant professor of biology in the Eberly College of Science, and the leader of the research team.

“We know from previous studies that there are immediate effects of binge drinking on the brain, but we didn’t have any sense of if these changes were long-lasting, or reversible over time,” said Crowley, who is also an assistant professor of biomedical engineering and of pharmacology. “We were interested in understanding if binge drinking during early adulthood may have lasting consequences that are not revealed until later in life — even if drinking had stopped for a very long period of time. This allows us to consider the effects of alcohol on an individual’s holistic health, in terms of their entire life history.”

Revolutionizing Epigenetics: A New Era Of DNA Methylation Sequencing

Oxford Nanopore Technologies and Wasatch BioLabs have joined forces to develop a groundbreaking direct whole-methylome sequencing (dWMS) product. This collaboration addresses the limitations of traditional methylation sequencing methods, such as bisulfite sequencing and methylation microarrays.

By leveraging Oxford Nanopore’s advanced sequencing technology and Wasatch BioLabs’ proprietary methylation assays, the partners aim to offer a more comprehensive and accurate approach to studying epigenetic modifications. dWMS eliminates the need for harsh chemical treatments and PCR amplification, reducing biases and improving genome-wide coverage.

This innovative technology has the potential to revolutionize epigenetic research, providing valuable insights into the role of methylation in various biological processes and diseases. The collaboration between these two companies is poised to drive significant advancements in genomics and precision medicine.

Novel physical reservoir computing device mimics human synaptic behavior for efficient edge AI processing

Researchers at Tokyo University of Science have developed a solar cell-based optoelectronic device that mimics human synapses for efficient edge AI processing.


Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option.

It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and processing capabilities akin to the human visual system.

However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.

Ancient hot water on Mars: A habitable past of planet

A new study by Curtin University has revealed what could be the oldest direct evidence of ancient hot water activity on Mars. The research focused on a 4.45 billion-year-old zircon grain from the Martian meteorite NWA7034, also called Black Beauty. The analysis found geochemical signatures suggesting that water-rich fluids were present, providing evidence that Mars may have been habitable in the past.

Read Full Story