Toggle light / dark theme

Microsoft making progress on quantum computer ‘every day’

Microsoft is “all-in” on building a quantum computer and is making advancements “every day”, according to one of the company’s top experts on the technology.

Julie Love (above), Director of Quantum Computing, called the firm’s push to build the next generation of computer technology “one of the biggest disruptive bets we have made as a company”.

Quantum computing has the potential to help humans tackle some of the world’s biggest problems in areas such as materials science, chemistry, genetics, medicine and the environment. It uses the physics of qubits to create a way of computing that can work on specific kinds of problems that are impossible with today’s computers. In theory, a problem that would take today’s machines billions of years to solve could be completed by a quantum computer in minutes, hours or days.

Scientists discover promising off-switch for inflammation

And inflammation is one of the three primary ageing processes.


Scientists have discovered a new metabolic process in the body that can switch off inflammation. They have discovered that ‘itaconate’—a molecule derived from glucose—acts as a powerful off-switch for macrophages, which are the cells in the immune system that lie at the heart of many inflammatory diseases including arthritis, inflammatory bowel disease and heart disease.

The scientists, working in the School of Biochemistry and Immunology in the Trinity Biomedical Sciences Institute at Trinity College Dublin, hope their discovery will have relevance for inflammatory and infectious diseases—and that their findings may also help to develop much-needed new drugs to treat people living with these conditions.

Professor of Biochemistry at Trinity, Luke O’Neill, was, along with Dr. Mike Murphy of the University of Cambridge, the joint leader of the work just published in leading international journal Nature. The discoveries were made using both human cells and mice as a model organism.

Full of hot air and proud of it

This could be used for hydrogen storage.


Of the four states of matter, gases are the hardest to pin down. Gas molecules move quickly and wildly and don’t like to be confined. When confined, heat and pressure build in the container, and it doesn’t take long before the gas blows the lid off the place, literally. Luckily, gases are superficial. Provide them with an attractive internal surface area, and they’ll pin themselves down in no time. No, it’s not love at first sight, it’s adsorption.

“Adsorption is the processes of gas pinning to the surface of another material—the inside walls of a container, for example,” says Chris Wilmer, assistant professor in Pitt’s Department of Chemical and Petroleum Engineering. “When adsorption occurs, the stop bumping into each other, reducing pressure. So, by increasing a container’s internal surface area, we can store more gas in less space.”

Dr. Wilmer directs the Hypothetical Materials Lab, where he and his research group develop new ways to store, separate, and transport gases. They recently published their study “Thermal Transport in Interpenetrated Metal-Organic Frameworks” in the American Chemistry Society Journal Chemistry of Materials. The issue’s cover also featured an image designed by Kutay Sezginel, a chemical engineering graduate student in Dr. Wilmer’s Lab. It depicted interpenetrated or MOFs.

Sodium-ion battery packs a punch

A new sodium-ion battery chemistry that shows superior performance to existing state-of-the-art sodium-based batteries could be the catalyst to enabling mass-production of the emerging technology for large-scale energy storage, such as in applications including storing solar power for industrial sites.

Despite sodium’s appeal as a low-cost, abundant and environmentally friendly building block for storage, it is a relatively new entrant in the field of battery technology research and development.

A key issue for sodium-ion batteries is that many of the active materials used in their chemistry are sensitive to air—exposure to even a few molecules of air can degrade the material and reduce battery performance.

Daily Viagra May Reduce Colorectal Cancer Odds

Viagra reduces colorectal cancer odds in mice by 50%, says a new report which adds that a clinical trial should be the next step.


Summary: Viagra reduces colorectal cancer odds in mice by 50%, says a new report which adds that a clinical trial of low-dose Viagra should be the next step.[This article first appeared on LongevityFacts. Author: Brady Hartman. ]

Viagra cut in half the formation of precancerous polyps that form before the onset of colorectal cancer, says cancer researcher Darren D. Browning Ph.D. – a Professor in the Department of Biochemistry & Molecular Biology and Director of the Biochemistry and Cancer Biology Graduate Program at the Medical College of Georgia (MCG) in Augusta.

“Giving a baby dose of Viagra can reduce the amount of tumors in these animals by half,” Dr. Browning says.

A second ‘Big Bang’ could end our universe in an instant — and it’s all because of a tiny particle that controls the laws of physics

Our known universe may end the same way it was created: With a big, sudden bang.

That’s according to new research from a group of Harvard physicists, who found that the destabilization of the Higgs Boson — a tiny quantum particle that gives other particles mass — could lead to a huge explosion of energy that would consume everything in the known universe.

The energy released by the event would destabilize the laws of physics and chemistry.

Research overcomes major technical obstacles in magnesium-metal batteries

YES!!!


Scientists at the Department of Energy’s National Renewable Energy Laboratory (NREL) have discovered a new approach for developing a rechargeable non-aqueous magnesium-metal battery.

A proof-of-concept paper published in Nature Chemistry detailed how the scientists pioneered a method to enable the reversible of magnesium metal in the noncorrosive carbonate-based electrolytes and tested the concept in a prototype cell. The technology possesses potential advantages over lithium-ion batteries—notably, higher density, greater stability, and lower cost.

NREL researchers (from left) Seoung-Bum Son, Steve Harvey, Andrew Norman and Chunmei Ban are co-authors of the Nature Chemistry white paper, “An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes” working with a Time-of-flight secondary ion mass spectrometry. The device allows them to investigate material degradation and failure mechanisms at the micro- to nano-scale. (Photo by Dennis Schroeder / NREL)

First age-map of the heart of the Milky Way

The first large-scale age-map of the Milky Way shows that a period of star formation lasting around 4 billion years created the complex structure at the heart of our galaxy. The results will be presented by Marina Rejkuba at the European Week of Astronomy and Space Science (EWASS) in Liverpool on Tuesday, 3rd April.

The Milky Way is a spiral galaxy with a bulge at the centre, thousands of light years in diameter, that contains about a quarter of the total mass of . Previous studies have shown that the bulge hosts two components: a population of metal-poor stars that have a spherical distribution, and a population of metal-rich stars that form an elongated bar with a “waist”, like an x or a bi-lobed peanut. However, analyses of the ages of the stars to date have produced conflicting results. Now, an international team led by astronomers from the European Southern Observatory (ESO) have analysed the colour, brightness and spectral information on chemistry of individual stars to produce the age-map of the Milky Way.

The team have used simulated and observed data for millions of stars from the VISTA Variables in the Via Lactea (VVV) infrared survey of the inner Milky Way and compared them with measurements of the metal content of around 6000 stars across the inner bulge from a spectroscopic survey carried out with the GIRAFFE/FLAMES spectrograph on the ESO Very Large Telescope (GIBS).

Biomimetic chemistry—DNA mimic outwits viral enzyme

Not only can synthetic molecules mimic the structures of their biological models, they can also take on their functions and may even successfully compete with them, as an artificial DNA sequence designed by Ludwig-Maximilians-Universitaet (LMU) in Munich chemist Ivan Huc now shows.

Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. As the leader of a research group devoted to biomimetic supramolecular chemistry, he creates ‘unnatural’ molecules with defined, predetermined shapes that closely resemble the major biological polymers, proteins and DNA found in cells. The backbones of these molecules are referred to as ‘foldamers’ because, like origami patterns, they adopt predictable shapes and can be easily modified. Having moved to LMU from his previous position at Bordeaux University last summer, Huc has synthesized a helical molecule that mimics surface features of the DNA double helix so closely that bona fide DNA-binding proteins interact with it.

This work is described in a paper published in Nature Chemistry. The new study shows that the synthetic compound is capable of inhibiting the activities of several DNA-processing enzymes, including the ‘integrase’ used by the (HIV) to insert its genome into that of its host cell. The successful demonstration of the efficacy of the synthetic DNA mimic might lead to a new approach to the treatment of AIDS and other retroviral diseases.

/* */