Menu

Blog

Archive for the ‘chemistry’ category: Page 248

Apr 30, 2021

New Law of Physics Helps Humans and Robots Grasp the Friction of Touch

Posted by in categories: biotech/medical, chemistry, robotics/AI

Still calling 2025 for the debut of a robotic set of human level hands.


Although robotic devices are used in everything from assembly lines to medicine, engineers have a hard time accounting for the friction that occurs when those robots grip objects – particularly in wet environments. Researchers have now discovered a new law of physics that accounts for this type of friction, which should advance a wide range of robotic technologies.

“Our work here opens the door to creating more reliable and functional haptic and robotic devices in applications such as telesurgery and manufacturing,” says Lilian Hsiao, an assistant professor of chemical and biomolecular engineering at North Carolina State University and corresponding author of a paper on the work.

Continue reading “New Law of Physics Helps Humans and Robots Grasp the Friction of Touch” »

Apr 30, 2021

Katherine Sizov — Strella Biotech — Bio-Sensing To Reduce Food Waste And Optimize Supply Chains

Posted by in categories: biotech/medical, chemistry, engineering, food

Novel bio-sensing technologies to reduce food waste and optimize supply chains — a US$1 trillion need — katherine sizov — founder, strella biotechnology.


An estimated 40% of all global produce is wasted due to spoilage that occurs before it ever reaches consumers’ grocery bags. And this loss, not only represents loss due to quality or ripeness standards that consumers desire, but also a significant impact on global emissions and fresh water supplies that it took to produce and transport that produce, representing a combined figure of US$1 Trillion annually.

Continue reading “Katherine Sizov — Strella Biotech — Bio-Sensing To Reduce Food Waste And Optimize Supply Chains” »

Apr 29, 2021

Court sets in motion EPA ban on pesticide linked to developmental issues

Posted by in category: chemistry

A federal appeals court on Thursday said the Environmental Protection Agency (EPA) must ban a pesticide linked to developmental issues in children within 60 days unless it can find a safe use for the chemical.

The 9th Circuit ruled that the evidence compiled by the EPA fails to show that the substance chlorpyrifos is not harmful. Studies have linked exposure to chlorpyrifos to lower IQ, impaired working memory and negative impacts on motor development.

“The EPA has spent more than a decade assembling a record of chlorpyrifos’s ill effects and has repeatedly determined, based on that record, that it cannot conclude, to the statutorily required standard of reasonable certainty, that the present tolerances are causing no harm,” wrote Judge Jed Rakoff, a Clinton appointee, in the majority opinion. He was joined by Judge Jacqueline Nguyen, an Obama appointee.

Apr 29, 2021

Highly Accurate Measurements Show Neutron Star “Skin” Is Less Than a Millionth of a Nanometer Thick

Posted by in categories: chemistry, particle physics, space

Nuclear physicists make new, high-precision measurement of the layer of neutrons that encompass the lead nucleus, revealing new information about neutron stars.

Nuclear physicists have made a new, highly accurate measurement of the thickness of the neutron “skin” that encompasses the lead nucleus in experiments conducted at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility and just published in Physical Review Letters. The result, which revealed a neutron skin thickness of .28 millionths of a nanometer, has important implications for the structure and size of neutron stars.

The protons and neutrons that form the nucleus at the heart of every atom in the universe help determine each atom’s identity and properties. Nuclear physicists are studying different nuclei to learn more about how these protons and neutrons act inside the nucleus. The Lead Radius Experiment collaboration, called PREx (after the chemical symbol for lead, Pb), is studying the fine details of how protons and neutrons are distributed in lead nuclei.

Apr 27, 2021

Google performed the first quantum simulation of a chemical reaction

Posted by in categories: chemistry, computing, particle physics, quantum physics

Circa 2020 o.,.o!


By Leah Crane.

Google researchers have used a quantum computer to simulate a chemical reaction for the first time. The reaction is a simple one, but this marks a step towards finding a practical use for quantum computers.

Continue reading “Google performed the first quantum simulation of a chemical reaction” »

Apr 27, 2021

Physicists net neutron star gold from measurement of lead

Posted by in categories: chemistry, particle physics, space

Nuclear physicists have made a new, highly accurate measurement of the thickness of the neutron “skin” that encompasses the lead nucleus in experiments conducted at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility and just published in Physical Review Letters. The result, which revealed a neutron skin thickness of .28 millionths of a nanometer, has important implications for the structure and size of neutron stars.

The protons and neutrons that form the nucleus at the heart of every atom in the universe help determine each atom’s identity and properties. Nuclear physicists are studying different nuclei to learn more about how these protons and neutrons act inside the nucleus. The Lead Radius Experiment collaboration, called PREx (after the chemical symbol for lead, Pb), is studying the fine details of how protons and neutrons are distributed in lead nuclei.

“The question is about where the neutrons are in lead. Lead is a heavy nucleus—there’s extra neutrons, but as far as the is concerned, an equal mix of protons and neutrons works better,” said Kent Paschke, a professor at the University of Virginia and experiment co-spokesperson.

Apr 26, 2021

Farming Robot Kills 100,000 Weeds per Hour With Lasers

Posted by in categories: chemistry, food, health, robotics/AI, space

A person can weed about one acre of crops a day. This smart robot can weed 20.


Carbon Robotics has unveiled the third-generation of its Autonomous Weeder, a smart farming robot that identifies weeds and then destroys them with high-power lasers.

The weedkiller challenge: Weeds compete with plants for space, sunlight, and soil nutrients. They can also make it easier for insect pests to harm crops, so weed control is a top concern for farmers.

Continue reading “Farming Robot Kills 100,000 Weeds per Hour With Lasers” »

Apr 26, 2021

Advancing AI With a Supercomputer: A Blueprint for an Optoelectronic ‘Brain’

Posted by in categories: biological, chemistry, robotics/AI, supercomputing

Others think we’re still missing fundamental aspects of how intelligence works, and that the best way to fill the gaps is to borrow from nature. For many that means building “neuromorphic” hardware that more closely mimics the architecture and operation of biological brains.

The problem is that the existing computer technology we have at our disposal looks very different from biological information processing systems, and operates on completely different principles. For a start, modern computers are digital and neurons are analog. And although both rely on electrical signals, they come in very different flavors, and the brain also uses a host of chemical signals to carry out processing.

Now though, researchers at NIST think they’ve found a way to combine existing technologies in a way that could mimic the core attributes of the brain. Using their approach, they outline a blueprint for a “neuromorphic supercomputer” that could not only match, but surpass the physical limits of biological systems.

Apr 24, 2021

A strategy to rejuvenate dead lithium inside batteries

Posted by in categories: chemistry, computing, mobile phones

Li-ion batteries and other emerging lithium-based battery technologies are currently used to power a wide range of devices, including smartphones, laptops, tablets and cameras. Despite their advantages, batteries containing lithium do not always retain their performance over time.

One of the main reasons for the performance decay observed in some Li-based batteries is that the lithium contained within them sometimes becomes inactive or “dead.” This “dead lithium” can cause capacity decay and thermal runaway, which can ultimately reduce a battery’s lifespan and impair its performance.

Researchers at Zhejiang University of Technology in China and Argonne National Laboratory in the U.S. have recently devised a strategy to restore inactive lithium in Li anodes. This strategy, outlined in a paper published in Nature Energy, is based on a chemical reaction known as iodine redox.

Apr 23, 2021

Students make neutrons dance beneath Berkeley campus

Posted by in categories: biotech/medical, chemistry

Circa 2019


To create neutrons in the high flux neutron generator, UC Berkeley researchers heat up deuterium atoms in a vacuum chamber to 50000 degrees Celsius to obtain an ionized plasma (pink glow), then accelerate the ions until they collide and fuse with other deuterium atoms implanted in the titanium cathode, releasing neutrons in the process. The spiral coil is the water-cooled radio-frequency antenna that heats the plasma, viewed through a quartz window into the vacuum chamber. (UC Berkeley photo by Cory Waltz)

In an underground vault enclosed by six-foot concrete walls and accessed by a rolling, 25-ton concrete-and-steel door, University of California, Berkeley, students are making neutrons dance to a new tune: one better suited to producing isotopes required for geological dating, police forensics, hospital diagnosis and treatment.

Continue reading “Students make neutrons dance beneath Berkeley campus” »