Toggle light / dark theme

If humans are ever going to be able to regrow damaged tissues the way lizards and fish routinely do, it will require the precise control of gene expression in time and place—otherwise you might end up with random cells growing everywhere or a new body part that never quits growing. That is, stopping the process just as important as starting it.

A team of Duke scientists studying how other animals regrow damaged tissues has made an important step toward controlling at least one part of the regenerative machinery with that kind of precision. They used the mechanisms zebrafish rely on to repair damage to their hearts combined with viral vectors used for in humans.

In a new paper appearing online Dec. 13 in Cell Stem Cell, the researchers demonstrate the ability to control gene activity in response to , limiting it to a specific region of and during a defined time window, rather than being continuously active in the entire organ.

The findings shed a rare light on mitoribosomes, the unique ribosomes found within the cell’s mitochondria. Ribosomes, the tiny protein-producing factories within cells, are ubiquitous and look largely identical across the tree of life. Those that keep bacteria chugging along are, structurally, not much different from the ribosomes churning out proteins in our own human cells.

But even two organisms with similar ribosomes may display significant structural differences in the RNA and protein components of their mitoribosomes. Specialized ribosomes within the mitochondria (the energy producing entities within our cells), mitoribosomes help the mitochondria produce proteins that manufacture ATP, the energy currency of the cell.

Scientists in the laboratory of Sebastian Klinge wondered how mitoribosomes evolved, how they assemble within the cell, and why their structures are so much less uniform across species. To answer these questions, they used cryo-electron microscopy to generate 3D snapshots of the small subunits of yeast and human mitoribosomes as they were being assembled. Their findings, published in Nature, shed light on the fundamentals of mitoribosome assembly, and may have implications for rare diseases linked to malfunctioning mitoribosomes.

New research has finally pinned down an physiological change that explains why we are so much more prone to certain respiratory infections when the weather is lousy. The discovery is the first biological mechanism to explain why the common cold, flu and COVID-19 see such significant seasonal spikes when the weather is colder in certain regions, and could help us work on better preventative measures.

“Conventionally, it was thought that cold and flu season occurred in cooler months because people are stuck indoors more where airborne viruses could spread more easily,” said Dr Benjamin Bleier, director of Otolaryngology Translational Research at Mass Eye and Ear and senior author of the study, in a statement.

“Our study however points to a biological root cause for the seasonal variation in upper respiratory viral infections we see each year, most recently demonstrated throughout the COVID-19 pandemic.”

Engineers at the University of Illinois Chicago have built a machine that captures carbon from flue gas and converts it to ethylene.

The device integrates a system with an ethylene conversation system for the first time. Moreover, the system not only runs on electricity, but it also removes more carbon from the environment than it generates—making it what scientists call net-negative on carbon emissions.

Among manufactured chemicals worldwide, ethylene ranks third for after ammonia and cement. Ethylene is used not only to create plastic products for the packaging, agricultural and automotive industries but also to produce chemicals used in antifreeze, medical sterilizers and vinyl siding for houses, for example.

Artificial Intelligence vol. 4 — The Rise of the Machines.

01. Intro — Roy meets Tyrell.
02. Vangelis — Los Angeles, November 2019 [01:08]
03. Mahindra Waves — DNA [03:41]
04. Between Interval — Sea of Darkness [09:00]
05. Carl Sagan’s last Interview — The Warning [11:50]
06. Sam Hulick (Mass Effect OST) — Normandy [12:52]
07. Kammarheit — Provenience [14:10]
08. Vataff Project — Owl [18:03]
09. Field Rotation — Tiefflug [24:50]
10. Juno Reactor — Nitrogen Part 1 [31:28]
11. Mono Junk — Enter [38:30]
12. Gus Gus vs. T-world — Esja [43:10]
13. Aphex Twin — On [51:10]
14. Sephira — Memory Access [56:40]
15. HECQ — 8 [01:00:20]
16. Distant System — Pupillary response [01:01:20]
17. Blastromen — Follow The Command [01:03:20]
18. Blastromen — Battlenet [01:09:50]
19. Asura — Regenesis [01:16:53]
20. Field Rotation — Regenzeit [01:21:50]
21. Vangelis — Blade Runner (End Titles) [01:26:20]

When the paradise tree snake flies from one tall branch to another, its body ripples with waves like green cursive on a blank pad of blue sky. That movement, aerial undulation, happens in each glide made by members of the Chrysopelea family, the only known limbless vertebrates capable of flight. Scientists have known this, but have yet to fully explain it.

For more than 20 years, Jake Socha, a professor in the Department of Biomedical Engineering and Mechanics at Virginia Tech, has sought to measure and model the biomechanics of snake flight and answer questions about them, like that of aerial undulation’s functional role. For a study published by Nature Physics, Socha assembled an interdisciplinary team to develop the first continuous, anatomically-accurate 3D mathematical model of Chrysopelea paradisi in flight.

The team, which included Shane Ross, a professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering, and Isaac Yeaton, a recent mechanical engineering doctoral graduate and the paper’s lead author, developed the 3D model after measuring more than 100 live snake glides. The model factors in frequencies of undulating waves, their direction, forces acting on the body, and mass distribution. With it, the researchers have run virtual experiments to investigate aerial undulation.

Neurotechnology and Brain-Computer Interfaces are advancing at a rapid pace and may soon be a life-changing technology for those with limited mobility and/or paralysis. There are already two brain implants, Blackrock Neurotech’s NeuroPort and Synchron’s Stentrode, that have been approved to start clinical trials under an Investigational Device Exemption. In this video, we compare these devices on the merits of safety, device specifications, and capability.

Thanks to Blackrock Neurotech for sponsoring this video. The opinions expressed in this video are that of The BCI Guys and should be taken as such.

——–ABOUT US:——-

Harrison and Colin (The BCI Guys) are neurotech researchers and entrepreneurs dedicated to creating a brain-controlled future! Neurotechnology and brain-computer interfaces are devices that allow users to control machines with their thoughts and interact with technology in new ways. This revolutionary technology will change life as we know it, and soon will be as common as the touchscreen on your smartphone. Join us in learning about the brain-controlled future!

Year 2017 face_with_colon_three


The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.