Toggle light / dark theme

Nascent mitochondrial proteins initiate the localized condensation of cytosolic protein aggregates on the mitochondrial surface

Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70’s substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.

Enhanced light absorption in thin silicon photodetectors with photon-trapping structures

Photonic systems are quickly gaining traction in many emerging applications, including optical communications, lidar sensing, and medical imaging. However, the widespread adoption of photonics in future engineering solutions hinges on the cost of manufacturing photodetectors, which, in turn, largely depends on the kind of semiconductor utilized for the purpose.

Traditionally, silicon (Si) has been the most prevalent semiconductor in the , so much so that most of the industry has matured around this material. Unfortunately, Si has a relatively weak light absorption coefficient in the near-infrared (NIR) spectrum compared to those of other semiconductors such as (GaAs).

Because of this, GaAs and related alloys thrive in photonic applications, but are incompatible with the traditional complementary metal-oxide-semiconductor (CMOS) processes used in the production of most electronics. This leads to a drastic increase in their manufacturing costs.

Building a better food system

More people than ever before—828 million, according to the most recent estimates—do not know where their next meal will come from. Yet we are producing more food than ever, with cereal grain production at an all-time high. How did we get so far off track in ending hunger and how do we get back on course?

Food crises are complex, and the temptation is to fix the symptom, rather than identifying the cause. COVID-19, conflict, and climate change are among the most frequently cited causes of the current food price crisis, but the underlying systemic issue remains: We need to radically transform the way we produce and consume food.

A more stable, equitable, and sustainable food system would connect the world’s 600 million farms with its 8 billion consumers, and capitalize on the ability to both feed the hungry while mitigating greenhouse gas emissions and rapidly adapting to a changing climate. We must act now, together, and decisively, or risk more crises in the future. Five critical actions are set out below.

These super strong nanostructures are made of glass-coated DNA

One of the world’s strongest structures could be one of its smallest: Collaborators from University of Connecticut, Columbia University, and Brookhaven National Lab have developed a new nanomaterial composed of DNA strands coated in flawless glass. At proportionally four times stronger and five times lighter than steel, the minuscule latticework structures could provide a template for a new wave of extremely durable and lightweight vehicles, body armor, and countless other products.

As detailed recently in Cell Reports Physical Science, the team first connected multiple portions of self-assembling DNA to form a nanostructure framework akin to a building’s support beams. They then coated the enjoined DNA strands with a glass-like material only a few hundred atoms thick, leaving relatively large empty spaces akin to rooms in a house. These spaces allowed the resulting nanomaterial to remain extremely lightweight, while the glass reinforced its durability.

[Related: Microscopic mesh could be the key to lighter, stronger body armor.].

Positive effect of inaudible high-frequency components of sounds on glucose tolerance: a quasi-experimental crossover study

Pseudo or Real?


In this study, the FRS condition typically suppressed the increase in glucose levels in the OGTT compared with that in the HCS condition. This tendency was also observed after comparing glucose levels 1 h after glucose loading (Supplementary Fig. S2 online). The suppressive effect of the FRS condition on glucose elevation was more pronounced in the older age group and the group with high HbA1c. However, it was not evident in the younger age group or the group with low HbA1c. Similarly, this tendency was observed when we divided the participants into two groups: high glucose level and low glucose level by OGTT (Supplementary Fig. S3 online). These converging findings imply that sounds with inaudible HFC are more effective in improving glucose tolerance in individuals at a higher risk of glucose intolerance.

It is well experienced in daily practice that stress has a significant impact on glycemic control in patients with diabetes. Many reports have highlighted stress-induced increases in blood glucose levels in patients with type 2 diabetes22,23,24,25,26,27,28,29,30,31. In addition, a large population-based cohort study of Japanese participants reported a 1.22-fold (women) and 1.36-fold (men) increased risk of developing diabetes in individuals with high subjective stress levels compared with those with low levels32. This indicates that stress management influences the pathological transition of patients with diabetes and the prevention of its onset in healthy individuals or potential prediabetics. However, the effects of stress on individuals, both in type and degree, vary so widely33,34,35 that it is practically difficult to study them under experimentally controlled conditions, unlike with pharmacotherapy.

The effects of stress on blood glucose levels are believed to be primarily mediated by neural control from the brainstem and hypothalamus36,37. We considered it important to investigate the possibility that acoustic information acting on the hypothalamus and brainstem may have physiological effects on glucose tolerance, independent of psychological effects, rather than primarily reducing subjective stress, which varies considerably among individuals and is difficult to measure objectively.

We’re one step closer to reading an octopus’s mind

Nine brains, blue blood, instant camouflage: It’s no surprise that octopuses capture our interest and our imaginations. Science-fiction creators, in particular, have been inspired by these tentacled creatures.

An octopus’s remarkable intelligence makes it a unique subject for marine biologists and neuroscientists as well. Research has revealed the brain power of the octopus allows it to unscrew a jar or navigate a maze. But, like many children, the octopus also develops an impish tendency to push the boundaries of behavior. Several aquariums have found octopuses memorizing guard schedules to sneak into nearby tanks to steal fish; meanwhile, marine biologists have discovered that wild octopuses will punch fish … for no apparent reason.

According to Dr. Jennifer Maher, a professor at the University of Lethbridge in Canada, there are a “number of [different] types of learning [for octopuses]: cognitive tasks like tool use, memory of complex operations for future use, and observational learning.”

The First Step to Life: Hitting Reset To Start a New Embryo

Recent collaborative research conducted by scientists in the United States and China unveils the mechanism through which a fertilized egg cell, also known as a zygote, triggers a ‘reset’, enabling the newly formed embryo can develop according to its own genetic program. The study was recently published in the journal Nature.

It has been known for some time that the genome of a newly fertilized egg cell is inactive and has to be woken up, said Richard Schultz, research professor at the University of California, Davis, School of Veterinary Medicine and a corresponding author on the paper. This step is called zygote genome activation.

“For the embryo to develop, the oocyte/egg has to lose its identity and does so by making new stuff,” Schultz said. “We now know the first steps in how this transition occurs.”

Unearthing Our Past, Predicting Our Future: Scientists Discover the Genes That Shape Our Bones

This groundbreaking study, which was published as the cover article in the journal Science, not only sheds light on our evolutionary history but also paves the way for a future where physicians could more accurately assess a patient’s likelihood of suffering from ailments like back pain or arthritis later in life.

“Our research is a powerful demonstration of the impact of AI in medicine, particularly when it comes to analyzing and quantifying imaging data, as well as integrating this information with health records and genetics rapidly and at large scale,” said Vagheesh Narasimhan, an assistant professor of integrative biology as well as statistics and data science, who led the multidisciplinary team of researchers, to provide the genetic map of skeletal proportions.