Toggle light / dark theme

Study sheds light on where conscious experience resides in the brain

Researchers from Hebrew University of Jerusalem and UC Berkeley recorded electrical activity in the brains of epilepsy patients while showing them various images in an attempt to find out where persistent images are stored in the brain and how we consciously access those images. (Image credit: Hadar Vishne, Royal College of Art)

More than a quarter of all stroke victims develop a bizarre disorder — they lose conscious awareness of half of all that their eyes perceive.

After a stroke in the brain’s right half, for example, a person might eat only what’s on the right side of the plate because they’re unaware of the other half. The person may see only the right half of a photo and ignore a person on their left side.

3D Animation Captures Viral Infection in Action

With the summer holiday season now in full swing, the blog will also swing into its annual August series. For most of the month, I will share with you just a small sampling of the colorful videos and snapshots of life captured in a select few of the hundreds of NIH-supported research labs around the country.

To get us started, let’s turn to the study of viruses. Researchers now can generate vast amounts of data relatively quickly on a virus of interest. But data are often displayed as numbers or two-dimensional digital images on a computer screen. For most virologists, it’s extremely helpful to see a virus and its data streaming in three dimensions. To do so, they turn to a technological tool that we all know so well: animation.

This research animation features the chikungunya virus, a sometimes debilitating, mosquito-borne pathogen transmitted mainly in developing countries in Africa, Asia and the Americas. The animation illustrates large amounts of research data to show how the chikungunya virus infects our cells and uses its specialized machinery to release its genetic material into the cell and seed future infections. Let’s take a look.

Cell-free DNA blood test ‘poised to have significant impact’ on CRC screening

CHICAGO — A cell-free DNA blood-based test displayed 83% sensitivity for colorectal cancer detection and 90% specificity in an average-risk population, similar to the performance of current noninvasive screening options.

“Colorectal cancer screening is recommended for everyone in the United States,” Daniel Chung, MD, director of the High-Risk GI Cancer Clinic at Massachusetts General Hospital and professor at Harvard Medical School, told attendees at Digestive Disease Week. “But, despite the widespread availability of many screening options, there remain persistent and significant barriers, and unfortunately, screening rates remain suboptimal. In fact, only 59% of eligible individuals aged 45 and over are adherent, which is well below the acceptance target rate of 80%.”

He added: “A blood-based screening test that can be completed as part of a routine health care visit presents a unique and attractive opportunity to increase adherence to colon cancer screening.”

Stepping Into The Software-Defined Future

Let’s look at some examples of this software-defined momentum at the edge. In manufacturing, AI enables weld quality detection in real time on factory floors, improving production yields. In agriculture, farmers can use AI-driven systems to move from focusing on entire crops to looking at individual plants in a field to determine where to fertilize, irrigate or weed. Healthcare is transforming at every level—from the granularity of tracking nerve structures for anesthesia during surgery to the scale and scope of securing patient privacy and data across healthcare networks. An intelligent, software-defined edge aids in delivering resilience for evolving business needs.

AI tools and platforms are now widely available, allowing businesses to harness their power to build solutions faster and gain a competitive edge. This accessibility is crucial for scaling their usefulness, as it shifts solutions from being built solely by data scientists and software engineers to being used by domain experts with less coding experience. With simplified AI model toolkits and an open development platform, these users can stitch together their own solutions and deploy them anywhere.

Let’s take the example of a quick service restaurant (QSR). QSRs could improve their operations by monitoring orders and ingredient levels, then dynamically resupplying their inventories. Lowering barriers to AI means businesses like a QSR can tap into automation and intelligent software solutions on any device, such as a point-of-service system, laptop or mobile device. Customers are happier, food waste is reduced and process efficiencies help QSRs maintain operations even in our current labor shortage.

Innovative Liquid Cushioning Technology Promises Revolution in Safety Gear

New breakthrough in material design will help football players, car occupants, and hospital patients.

A significant breakthrough in the field of protective gear has been made with the discovery that football players were unknowingly acquiring permanent brain damage from repeated head impacts throughout their professional careers. This realization triggered an urgent search for better head protection solutions. Among these innovations is nanofoam, a material found inside football helmets.

Thanks to mechanical and aerospace engineering associate professor Baoxing Xu at the University of Virginia and his research team, nanofoam just received a big upgrade and protective sports equipment could, too. This newly invented design integrates nanofoam with “non-wetting ionized liquid,” a form of water that Xu and his research team now know blends perfectly with nanofoam to create a liquid cushion. This versatile and responsive material will give better protection to athletes and is promising for use in protecting car occupants and aiding hospital patients using wearable medical devices.

Bacterial–fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species

Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food-and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus.

Rewriting Textbooks: Scientists Discover Unexpected Complexity of Cerebellar Connections

Images of thousands of Purkinje cells reveal that almost all human cells have multiple primary dendrites. These structures, when observed in mice, facilitate connections with multiple climbing fibers originating from the brain stem.

In 1906, the Spanish researcher Santiago Ramón y Cajal received the Nobel Prize for his trailblazing exploration of the microscopic structures of the brain. His renowned illustrations of Purkinje cells within the cerebellum depict a forest of neuron structures, with multiple large branches sprouting from the cell body and splitting into beautiful, leaf-like patterns.

Despite these early portrayals showing multiple dendrites branching out from the cell body, the enduring consensus among neuroscientists is that Purkinje cells possess only a single main dendrite that forms a connection with a lone climbing fiber originating from the brain stem. However, a recent study from the University of Chicago, recently published in the journal Science, reveals that Cajal’s sketches were indeed accurate — practically all Purkinje cells in the human cerebellum have multiple primary dendrites.