Toggle light / dark theme

Research overcomes major obstacle for quantum sensor development

Researchers from the Niels Bohr Institute (NBI) have removed a key obstacle for development of extremely sensitive monitoring devices based on quantum technology.

Monitoring the heartbeat of an unborn child and other types of delicate medical examinations show the potential of . Since these sensors exploit phenomena at the scale of atoms, they can be far more accurate than today’s sensors.

Researchers from the Niels Bohr Institute (NBI), University of Copenhagen, have managed to overcome a major obstacle for development of quantum sensors. Their results are published in Nature Communications.

New 3D printing approach offers hope for brain injury repair

The University of Oxford researchers for the first time showcased that neural cells can be 3D printed to replicate the structure of the brain’s outer layer: the cerebral cortex.


In a significant breakthrough, scientists have created brain tissue using human stem cells through 3D printing. This advancement holds promise for potential future applications in treating brain injuries.

For the first time, the University of Oxford researchers showcased that neural cells can be 3D printed to replicate the structure of the brain’s outer layer: the cerebral cortex.

This accomplishment marks a significant advancement in the realm of neural tissue engineering.

Scientists engineer potent immune cells for ‘off-the-shelf’ cancer immunotherapy

UCLA scientists have developed a new method to engineer more powerful immune cells that can potentially be used for “off-the-shelf” cell therapy to treat challenging cancers.

“Off-the-shelf” cell therapy, also known as allogenic therapy, uses derived from healthy donors instead of patients. The approach can bring , like (CAR) T cell therapy, to more patients in a timelier manner, which is one of the major barriers in getting these life-saving treatments to patients.

“Time is often of the essence when it comes to treating people with advanced cancers,” said Lili Yang, associate professor of microbiology, immunology and molecular genetics and member of the UCLA Health Jonsson Comprehensive Cancer Center. “Currently, these types of therapies need to be tailored to the individual patient. We have to extract from a patient, genetically engineer the cells and then re-infuse them back into the patient. This process can take weeks to months and can cost hundreds of thousands of dollars to treat each patient.”

Heat-related Cardiovascular Deaths in the U.S. may more than Double within Decades

In nationwide projections, elderly and Black adults are most at risk for cardiovascular death due to extreme heat, finds a new study. Cardiovascular deaths from extreme heat in the U.S. may more than double by the middle of the century. Without reductions in greenhouse gas emissions, that number could even triple, according to new research published today in the American Heart Association’s flagship journal Circulation.

“Climate change and its many manifestations will play an increasingly important role on the health of communities around the world in the coming decades,” said lead study author Sameed Khatana, M.D., M.P.H., assistant professor of medicine at the University of Pennsylvania and a staff cardiologist at the Philadelphia Veterans Affairs Medical Center, both in Philadelphia. “Climate change is also a health equity issue as it will impact certain individuals and populations to a disproportionate degree and may exacerbate preexisting health disparities in the U.S.”

How much and how quickly greenhouse gas emissions increase in the next decades will determine the health impacts of extreme heat. More aggressive policies to reduce greenhouse gas emissions have the potential to reduce the number of people who may experience the adverse health effects of extreme heat, according to Khatana.

PET scans may predict Parkinson’s disease and Lewy body dementia in at-risk individuals

In a small study, researchers at the National Institutes of Health have found that positron emission tomography (PET) scans of the heart may identify people who will go on to develop Parkinson’s disease or Lewy body dementia among those at-risk for these diseases.

The findings, published in the Journal of Clinical Investigation and led by scientists at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH, may advance efforts to detect the earliest changes that years later lead to Parkinson’s disease and Lewy body dementia.

In 34 people with Parkinson’s disease risk factors, researchers conducted PET scans of the heart to gain insight into levels of the neurotransmitter norepinephrine. They found that the scans could distinguish individuals who would later be diagnosed with Parkinson’s or Lewy body dementia—both are brain diseases caused by abnormal deposits of the protein alpha-synuclein that form clumps known as Lewy bodies. The research was conducted at the NIH Clinical Center, currently the only location for 18 F-dopamine PET scanning.

Lung cancer researchers identify specific genetic change that predicts whether patients can respond to targeted therapy

Squamous cell lung cancer is a lung cancer subtype that is particularly difficult to treat. A new study now has revealed a novel genetic alteration that occurs in some cases in this type of tumor and that may expose a weakness of the tumor for therapeutic intervention.

The University of Cologne researchers led by Professor Roman Thomas, director of the Department of Translational Genomics, was able to show that a certain genetic change occurs during tumor formation and that a previously unknown oncogene is produced. Oncogenes are genes that promote the growth of tumors. In some cases, they can be inhibited by targeted drug treatments.

This approach is often accompanied by a higher success rate and lower side effects compared to conventional chemotherapy. The scientists’ discovery could therefore be a first step toward a more successful therapy of this particular type of cancer.

Blocking an aging-related enzyme may restore muscle strength

Stem cell biologist Helen Blau of Stanford University School of Medicine and colleagues previously found that blocking 15-PGDH in old mice restored their withered muscles and improved their strength after a month of treatment. On the flip side, young mice lost muscle and became weaker after their levels of this enzyme were increased for a month.

Blau’s team has now found that 15-PGDH accumulates in the muscles of old mice as the connections that allow communication between muscles and nerves are lost, another consequence of aging. Treating old mice for one month with a drug that inhibits 15-PGDH restored these connections, called synapses, between muscle fibers and motor nerve cells, and boosted the animals’ strength, the team reports in the Oct. 11 Science Translational Medicine. Those synapses are how the brain directs muscles to move.

The findings suggest that blocking the gerozyme 15-PGDH may be a way to help recover strength that has diminished due to nerve injuries, motor nerve cell diseases or aging.

Epigenetic signature for obesity found in study of twins

A susceptibility to gain weight may be written into molecular processes of human cells, a Washington State University study indicates.

The proof-of-concept study with a set of 22 found an epigenetic signature in buccal or cheek cells appearing only for the twins who were obese compared to their thinner siblings. With more research, the findings could lead to a simple cheek swab test for an obesity biomarker and enable earlier prevention methods for a condition that effects 50% of U.S. adults, the researchers said.

“Obesity appears to be more complex than simple consumption of food. Our work indicates there’s a susceptibility for this disease and molecular markers that are changing for it,” said Michael Skinner, a WSU professor of biology and corresponding author of the study published in the journal Epigenetics.

/* */