Menu

Blog

Archive for the ‘biotech/medical’ category: Page 855

Oct 31, 2022

Cedars-Sinai Awarded $8 Million to Launch New Stem Cell Clinic

Posted by in categories: biotech/medical, life extension

Newswise — LOS ANGELES (Oct. 28, 2022) — Cedars-Sinai has been awarded a five-year, $8 million grant from California’s stem cell agency to launch an innovative new clinic that will expand patients’ access to stem cell and gene therapies, increase research and training in regenerative medicine, foster greater collaboration with eight similar clinics across the state and help educate the public about stem cell and related therapies.

The California Institute for Regenerative Medicine (CIRM) approved Cedars-Sinai’s plan to establish an Alpha Stem Cell Clinic, bringing Cedars-Sinai into a network of Alpha sites throughout California. The Cedars-Sinai clinic will develop preclinical studies into early and later phase clinical trials with the goal of establishing advanced regenerative medicine treatments that are FDA-approved for patients with debilitating diseases.

The Cedars-Sinai initiative is being led by the Cedars-Sinai Board of Governors Regenerative Medicine Institute and the Smidt Heart Institute. They are modeling the new Alpha Clinic on a jointly run Regenerative Medicine Clinic established at Cedars-Sinai in 2014—expanding scientific discovery and clinical trials for neurological, cardiovascular, musculoskeletal and autoimmune diseases.

Oct 31, 2022

Rapamycin is the most promising aging intervention we currently have

Posted by in categories: biotech/medical, life extension

It was in 1975 when scientists from Ayerst (now Pfizer) discovered a novel compound called rapamycin (also known as Sirolimus) in bacteria on Rapa Nui(Easter Island) in Chile. In 1999 rapamycin obtained FDA approval for the prevention of acute rejection of renal transplant. Unknown at the time, rapamycin would become the most potent anti-aging drug that humans currently hold.

This is the first article of a two-part series on rapamycin.

The profound effect rapamycin has on lifespan was first observed in yeast cells, and later confirmed in every model organism tested, including the nematode C. elegans, fruit flies, and mice.

Oct 30, 2022

Combining stem cell rejuvenation and senescence targeting to synergistically extend lifespan

Posted by in categories: biotech/medical, life extension

To test the interaction between senolytic removal of senescent cells and cellular reprograming, we designed a model combining these two interventions in an inducible overexpression system in Drosophila. First, we used the four Yamanaka factor based OKSM approach as this had been previously shown to induce pluripotent stem cells in mice [7], humans [29 31] and non-mammalian vertebrate and invertebrate species [32]. To make a senolytic factor for Drosophila, we took advantage of the mouse sequence (FOXO4-DRI [22]) to design an orthologous peptide based on the Drosophila foxo (forkhead box, sub-group O) gene [33]. We then characterized effects of these two interventions independently as well as in combination.

We began by looking at the effect of OKSM and Sen on stem cells in an intestinal stem cell (ISC) model [34, 35]. We chose to investigate phenotypic effects specifically in the digestive system of Drosophila (Supplementary Figure 1). As in mammals, the Drosophila gastric lining has a high turnover of cells which is enabled by stem cell pools that replenish the epithelia [34]. Age-dependent loss of stem cells and degradation of barrier function has been shown to contribute to age-dependent functional decline and mortality in Drosophila [36]. The Drosophila gut is composed of four cell types: enterocytes (ECs or absorptive cells), enteroendocrine (EEs or secretory cells), enteroblasts (EBs or transit amplifying cells) and intestinal stem cells (ISCs).

Oct 30, 2022

Stem cell rejuvenation startup secures investment

Posted by in categories: biotech/medical, life extension

Biotech company Mogling Bio has successfully has completed its first seed investment round with a sole investor, Kizoo Technology Capital.

Mogling Bio is developing new pharmacological approaches to rejuvenate old stem cells of the hematopoietic (blood cell formation) system.

Ageing causes stem cells to lose their normal structure by increased activity of the protein CDC42. Normalising CDC42 activity can restore structure, order and functionality in those aged stem cells.

Oct 30, 2022

Alex Zhavoronkov, ARDD2022: Pharma.AI platform for discovery and development of aging therapeutics

Posted by in categories: biotech/medical, internet, life extension, robotics/AI

The Aging and Drug Discovery Conference (ARDD) 2022 is pleased to present Alex Zhavoronkov from Insilico, with the talk A case study of the application of Pharma. AI platform for discovery and development of dual-purpose therapeutics targeting aging and disease.

Held in Copenhagen at the glorious Ceremonial Hall, this meeting gathers the most prominent figures of the aging and longevity research field, from scientists to clinicians, investors, developers, and everything in between. The fast growth of the conference is evidence of its great quality of it. In 2022 we had around 400 people on-site, and many others joined through the web.

Continue reading “Alex Zhavoronkov, ARDD2022: Pharma.AI platform for discovery and development of aging therapeutics” »

Oct 30, 2022

New Compound Discovered That Destroys the MRSA Superbug

Posted by in categories: biotech/medical, health

A compound that both inhibits the MRSA superbug and renders it more vulnerable to antibiotics in lab experiments has been discovered by researchers at the University of Bath in the UK.

Antibiotic resistance poses a major threat to human health around the world, and Staphylococcus aureus has become one of the most notorious multidrug-resistant pathogens. Led by Dr. Maisem Laabei and Dr. Ian Blagbrough at the University of Bath, scientists have discovered a compound that both inhibits the Methicillin-resistant Staphylococcus aureus (MRSA) superbug and renders it more vulnerable to antibiotics.

Staphylococcus aureus (staph) is a type of bacteria found on people’s skin. Staph bacteria are usually harmless, but they can cause serious infections that can lead to sepsis or death. Methicillin-resistant Staphylococcus aureus (MRSA) is a cause of staph infection that is difficult to treat because of resistance to some antibiotics.

Oct 30, 2022

Quantifying Biological Age: Blood Test #6 in 2022

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Continue reading “Quantifying Biological Age: Blood Test #6 in 2022” »

Oct 30, 2022

Planarian don’t age, there isn’t such thing as an old Planaria

Posted by in categories: biotech/medical, life extension, robotics/AI

Short clip of Michael Levin, an American developmental and synthetic biologist at Tufts University, talking about Planarian and their capacity to regenerate their organs indefinetely, which makes then biologically immortal.

The remarks where given during a fascinating three-hour-long conversation with Lex Fridman that was aired on october 1st, 2022.

Continue reading “Planarian don’t age, there isn’t such thing as an old Planaria” »

Oct 29, 2022

Biohacking with Stem Cell Therapy

Posted by in categories: bioengineering, biotech/medical

Biohacking is a relatively new practice that focuses on studying and learning about living beings and looking for ways to improve their function.

Oct 29, 2022

Light-analyzing ‘lab on a chip’ opens door to widespread use of portable spectrometers

Posted by in categories: biotech/medical, mobile phones, robotics/AI, security

Scientists including an Oregon State University materials researcher have developed a better tool to measure light, contributing to a field known as optical spectrometry in a way that could improve everything from smartphone cameras to environmental monitoring.

The study, published today in Science, was led by Finland’s Aalto University and resulted in a powerful, ultra-tiny that fits on a microchip and is operated using artificial intelligence.

The research involved a comparatively new class of super-thin materials known as two-dimensional semiconductors, and the upshot is a proof of concept for a spectrometer that could be readily incorporated into a variety of technologies—including quality inspection platforms, security sensors, biomedical analyzers and space telescopes.

Page 855 of 2,732First852853854855856857858859Last