Toggle light / dark theme

Most of the world’s population either chronically suffers from plaque and dental cavities or will develop them at some point in their lives. Toothpastes, mouthwashes, and regular checkups do their part, but more can always be done. Now, Ben-Gurion University of the Negev scientists and their colleagues at Sichuan University and the National University of Singapore have discovered that 3,3′-Diindolylmethane (DIM), a naturally occurring molecule also known as bisindole, reduces by 90% the biofilms that produce plaque and cavities. The molecule is also found to have anti-carcinogenic properties.

Their findings were published earlier this month in the journal Antibiotics.

Your mouth is a great reservoir for bacteria such as S. mutans, which is believed to be one of the primary actors in dental cavities. After you eat, S. mutans grows in the moist and sugary atmosphere of your in a biofilm that coats your teeth. Biofilm generates plaque, attacks enamel and causes cavities. The scientists found that the bisindole (DIM) disrupted that biofilm by 90% and therefore the bacterium was not given a chance to grow.

Phase I trials were conducted in New Zealand and China, and the drug was found to be safe for use.

A drug discovered using generative artificial intelligence (AI) has now entered Phase II clinical trials, with the first dose given to patients, its inventor Insilico Medicine said in a press release. The trials occurring at multiple sites in the US and China will involve 60 subjects with Idiopathic Pulmonary Fibrosis (IPF).

The term “Generative AI” has become common knowledge these days and is associated with bots that can perform tasks like having human-like conversations or creating art or images. However, Hong Kong and New York-based Insilico Medicine have been using the technology for years to discover therapies for debilitating diseases.

Ancient genomes can inform our understanding of the history of human adaptation through the direct tracking of changes in genetic variant frequency across different geographical locations and time periods. The authors review recent ancient DNA analyses of human, archaic hominin, pathogen, and domesticated animal and plant genomes, as well as the insights gained regarding past human evolution and behaviour.

In a recent study published in Metabolism, researchers investigate the correlation between a healthy lifestyle and Life’s Essential 8 (LE8) scores in new-onset severe non-alcoholic fatty liver disease (NAFLD).

Study: A healthy lifestyle, Life’s Essential 8 scores and new-onset severe NAFLD: A prospective analysis in UK Biobank. Image Credit: Explode / Shutterstock.com.

A new Jell-O-like material could replace metals as electrical interfaces for pacemakers, cochlear implants, and other electronic implants.

Do an image search for “electronic implants,” and you’ll draw up a wide assortment of devices, from traditional pacemakers and cochlear implants to more futuristic brain and retinal microchips aimed at augmenting vision, treating depression, and restoring mobility.

Some implants are hard and bulky, while others are flexible and thin. But no matter their form and function, nearly all implants incorporate electrodes — small conductive elements that attach directly to target tissues to electrically stimulate muscles and nerves.

A new type of macrophage recently identified in atherosclerotic lesions could provide a missing link in understanding the inflammatory origins of the common yet fatal condition.

Atherosclerosis is a common condition in which an accumulation of fat, named plaque, builds up on the innermost walls of arteries, causing them to become narrow and restrict the blood flow to such as the heart and the brain. It can be life-threatening if untreated—narrow arteries increase the risk of a blockage and lead to a or stroke.

Macrophages are immune cells that play essential roles in organ homeostasis as well as infection and injury. Key to their success is the ability to alter their transcriptional patterns of gene expression to perform highly-specialized roles in specific organs and tissues. However, their prominent role means that when things go wrong, macrophages can be impactful drivers of disease.

A team of researchers led by Feng Zhang at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT has uncovered the first programmable RNA-guided system in eukaryotes—organisms that include fungi, plants, and animals.

In a study published in Nature, the team describes how the system is based on a called Fanzor. They showed that Fanzor proteins use RNA as a guide to target DNA precisely, and that Fanzors can be reprogrammed to edit the of human cells. The compact Fanzor systems have the potential to be more easily delivered to cells and tissues as therapeutics than CRISPR/Cas systems, and further refinements to improve their targeting efficiency could make them a valuable new technology for editing.

CRISPR/Cas was first discovered in prokaryotes (bacteria and other single-cell organisms that lack nuclei) and scientists including Zhang’s lab have long wondered whether similar systems exist in eukaryotes. The new study demonstrates that RNA-guided DNA-cutting mechanisms are present across all kingdoms of life.

For the first time, researchers have shown that reduced oxygen intake, or “oxygen restriction,” is associated with longer lifespan in lab mice, highlighting its anti-aging potential. Robert Rogers of Massachusetts General Hospital in Boston, US, and colleagues present these findings in a study published May 23rd in the open access journal PLOS Biology.

Research efforts to extend healthy lifespan have identified a number of chemical compounds and other interventions that show promising effects in mammalian lab animals— for instance, the drug metformin or . Oxygen restriction has also been linked to longer lifespan in yeast, nematodes, and fruit flies. However, its effects in mammals have been unknown.

To explore the anti-aging potential of oxygen restriction in mammals, Rogers and colleagues conducted lab experiments with mice bred to age more quickly than other mice while showing classic signs of mammalian aging throughout their bodies. The researchers compared the lifespans of mice living at normal atmospheric oxygen levels (about 21%) to the lifespans of mice that, at 4 weeks of age, had been moved to a living environment with a lower proportion of oxygen (11%—similar to that experienced at an altitude of 5,000 meters).

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

At-Home Blood Testing (SiPhox Health): https://getquantify.io/mlustgarten.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.