Menu

Blog

Archive for the ‘biotech/medical’ category: Page 829

Nov 22, 2022

Human-powered aircraft: A plane with ‘impossible engineering’ and no engine

Posted by in categories: biotech/medical, engineering

Lazarus, built by university students, made its longest flight time yet.

Students at the University of Southampton have a special project they have been working on for years together. That is, to power flight using only the muscle power of a single pilot, technically known as human-powered aircraft (HPA). Earlier this year, the team won their first Formula Flight competition with their design dubbed Lazarus.

Continue reading “Human-powered aircraft: A plane with ‘impossible engineering’ and no engine” »

Nov 22, 2022

A novel technique to predict volcanic eruptions now possible, thanks to magma ‘foams’

Posted by in categories: biotech/medical, health

A seven-year study reveals that variations in specific isotopes linked to magmatic ‘foams’ can be used to predict volcanic unrest.

Scientists have found a way to use the ratio of atoms in specific gases created by volcanic fumaroles (gaps in the Earth’s surface) to detect what’s happening to magma deep below.

Volcanic eruptions are dangerous and challenging to predict. Could the new findings change this?

Continue reading “A novel technique to predict volcanic eruptions now possible, thanks to magma ‘foams’” »

Nov 22, 2022

‘Primordial super-enhancers’ provide early snapshot of the mechanisms that allowed for multicellularity

Posted by in categories: biotech/medical, genetics

New research at the University of Chicago has found that the same machinery used by mammalian cells to drive cellular differentiation also plays a critical role in activating genes in yeast in response to environmental stress.

The results, which were published in Molecular Cell, suggest that these machines, known as transcriptional condensates, are an ancient, conserved tool used by to promote high level for over a billion years. The findings are helping to not only better explain how cells respond dynamically to environmental cues but also have implications for understanding human diseases such as cancer and neurodegeneration.

The study extends existing research on transcriptional condensates in into yeast and their heat shock response—how cells respond to high temperatures. “The heat shock response is ancient,” said David Pincus, Ph.D., Assistant Professor of Molecular Genetics and Cell Biology at UChicago. “This response existed long before there were people—long before there were even yeast. It predates the split between prokaryotes and eukaryotes, so it’s a really fundamental and important cellular response.”

Nov 22, 2022

Powerhouses of the Cells: Mitochondria have a Waste Disposal Mechanism to get rid of Mutated mtDNA

Posted by in categories: biotech/medical, food, genetics, life extension

A research team has identified a molecular target that could open up new therapeutic options to treat aging-associated diseases like Parkinson’s. Scientists at the University of Cologne have discovered how cells can eliminate mutated mitochondrial DNA (mtDNA). Mitochondria are the powerhouses of our cells. Due to their evolutionary descent from bacteria, they still have genetic material packaged in chromosome-like structures (nucleoids). They convert the chemical energy in our food into a biologically usable form. A team of researchers from the University of Cologne’s Physiology Centre at the Faculty of Medicine, the Centre for Molecular Medicine Cologne (CMMC) and the CECAD Cluster of Excellence for Aging Research has now shown that mutations of the mtDNA lead to a local rearrangement of proteins in the mitochondrial membrane. The mutated mtDNA is targeted, eliminated, and subjected to autophagy, the cellular ‘waste disposal’. The results have appeared in Nature Communications under the title ‘Mitochondrial membrane proteins and VPS35 orchestrate selective removal of mtDNA’.

In many tissues, mutations in mtDNA accumulate as a result of normal aging. These kinds of mutations are an important cause of many aging-associated diseases. There are thousands of copies mtDNA in every cell, so mitochondrial function is only impaired when the percentage of mutated mtDNA molecules exceeds a certain threshold value. It has long been established that mitochondrial damage, including acute mtDNA damage, triggers the process of mitophagy. In this process, dysfunctional mitochondrial parts are selectively degraded and recycled.

Dr David Pla-Martin, the lead author of the current study, explained the details: ‘What is new in our study is that this mechanism does not affect the cells’ endowment with mitochondria, but only clears out the damaged mtDNA. By labelling neighbouring proteins — so-called proximity labelling — we showed that mtDNA damage leads to the recruitment of endosomes in close proximity to nucleoids.’ Their removal is coordinated by the interaction of the nucleoid protein Twinkle and the mitochondrial membrane proteins SAMM50 and ATAD3 controls their distribution, SAMM50 induces the release and transfer of the nucleoid to the so-called endosomes. ‘This additionally prevents the activation of an immune response. The protein VPS35, the main component of the retromer, mediates the maturation of early endosomes into late autophagy vesicles, where degradation and recycling ultimately take place,’ said Pla-Martin.

Nov 22, 2022

Scientists find causes of most major cancers

Posted by in category: biotech/medical

In a recent study from Yale University, scientists found the factors causing changes in the DNA that contribute most to cancer growth in tumors of most major tumor types. Some of the most prevalent cancers in the United States are known to be highly preventable by human decisions.

Nov 22, 2022

Biotech Grad’s Tech for Odourless & Waterless Urinals Saves 55 Cr Litres of Water

Posted by in category: biotech/medical

Kedar Kulkarni, a 27-year-old from Pune is transforming public urinals into odourless and hygienic urinals, using the waterless technology he innovated.

Sounds Interesting? Share it now!

Nov 22, 2022

Lethal cancer cells buddy up to survive

Posted by in categories: biotech/medical, chemistry

Tumor cells in the most common pancreatic cancer share nutrients to live and grow. A new discovery by University of California, Irvine biologists and collaborators during a four-year investigation could help lead to better treatments for pancreatic ductal adenocarcinoma, which accounts for over 90 percent of pancreatic cancer cases. The scientists’ paper appears in Nature Cancer. While pancreatic cancer is relatively rare, it is among the leading causes of cancer death in the United States.

One obstacle in treating , known as PDA, is that it generally does not show early symptoms. Another hurdle is the complexity of its dense and fibrous tumors. Consequently, they do not have fully functioning in the tumor. On one front, this makes it difficult to deliver effective chemotherapy. However, it also means the tumors have developed a different kind of metabolism.

“Without blood vessels, PDA cells aren’t getting the normal nutrients they need, so they have come up with other ways to nourish themselves and grow,” said Christopher Halbrook, assistant professor of molecular biology & biochemistry, and lead and co-corresponding author. Understanding this process is essential for devising treatments targeting the cancer’s metabolism.

Nov 22, 2022

Scientists Discover a New Way To Make Species

Posted by in categories: biotech/medical, evolution, genetics

The evolution of a new species by hybridization of two previously described species with no change in chromosomal number is very unusual in the animal world. So far, only a few empirically acknowledged cases of this spontaneous mode of evolution (from one generation to the next) known as homoploid hybridization exist.

A study led by Axel Meyer, Professor of Zoology and Evolutionary Biology at the University of Konstanz, has successfully demonstrated the emergence of a new hybrid species in cichlid fishes. This is likely the first instance of this genetic speciation method in vertebrates. The researchers reveal that a new hybrid species has emerged from the cichlid A. sagittae and A. xiloaensis in the crater lake Xiloá in Nicaragua using whole genome sequencing of more than 120 individuals as well as a number of other techniques.

Their findings were recently published in the journal Nature Communications.

Nov 22, 2022

How Artificial Intelligence Is Helping Improve Medical Processes

Posted by in categories: biotech/medical, health, robotics/AI

AI can also be of benefit in the diagnosis and treatment of patients. Tools have been created that help diagnose a patient as well as a human would.

AI isn’t a new technology—it’s been researched and developed since the 1950s and is currently present in many of our daily routines. Most of these applications are so common that we don’t even notice them.

Our lives often depend on the healthcare industry. So, having a technology that allows you to speed up patient registration processes and help diagnose more quickly and effectively is essential. Every health center should consider the use of AI for the benefit of its processes so it can adapt to the modern world and its accelerated pace.

Nov 22, 2022

The Cause of Alzheimer’s Could Be Coming From Inside Your Mouth

Posted by in categories: biotech/medical, neuroscience

In recent years, a growing number of scientific studies have backed an alarming hypothesis: Alzheimer’s disease isn’t just a disease, it’s an infection.

While the exact mechanisms of this infection are something researchers are still trying to isolate, numerous studies suggest the deadly spread of Alzheimer’s goes way beyond what we used to think.

One such study, published in 2019, suggested what could be one of the most definitive leads yet for a bacterial culprit behind Alzheimer’s, and it comes from a somewhat unexpected quarter: gum disease.

Page 829 of 2,734First826827828829830831832833Last