Toggle light / dark theme

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

This video was recorded at the 2022 Foresight Designing Molecular Machines Workshop. https://foresight.org/molecular-workshop/

Speakers:
Eric Drexler, Oxford University.

Join us:
► Twitter: https://twitter.com/foresightinst.
► Facebook: https://www.facebook.com/foresightinst.
► Instagram: https://www.instagram.com/existentialhope/
► LinkedIn: https://www.linkedin.com/company/foresight-institute.

If you enjoy what we do please support us via Patreon: https://www.patreon.com/foresightinstitute.
If you’re interested in joining these meetings consider donating through our donation page: https://foresight.org/donate/

Foresight Institute advances technologies for the long-term future of life, focusing on molecular machine nanotechnology, biotechnology, and computer science.

Many ophthalmologists’ offices around the country are home to a machine that enables doctors to take advantage of optical coherence tomography (OCT), a method of imaging the retina and other tissues in the eye. These OCT machines give doctors insight into the three-dimensional structures of their patients’ eyes, help them diagnose diseases and can even help save their patients’ sight.

The genesis of OCT machines began in the lab of Dr. James Fujimoto, who was inspired by advances in high-speed photography and lasers to start developing potential methods that would enable doctors to get better images of what was happening inside of people’s bodies. The goal, he told Forbes, was to develop… More.


In 1991, the trio published their first paper describing the technique they invented. “In less than a year, we were able to develop this new imaging technology, which in retrospect was pretty unusual,” Huang told Forbes.

Since the publication of that first paper, OCT has grown into a nearly $2 billion market. Doctors now routinely use the technology to diagnose diseases such as glaucoma, diabetes-related vision impairment and even coronary artery disease. “The impact on public health can be very large,” Fujimoto said. “If you can preserve vision, for example, to the point where patients can continue to drive a car, that’s a major change in lifestyle and an impact on quality of life.”

On Thursday, the Lasker Foundation awarded Fujimoto, Huang and Swanson its annual $250,000 award for Clinical Medical Research. The Foundation has been handing out its annual awards since 1945, which this year include two other categories: Basic Medical Research and Special Achievement in Medical Science. Many winners of these prizes have often gone on to win other scientific honors, including the Nobel Prize.

DeepMind has released a catalog of 71 million possible variants that can cause diseases.

Genetic mutations are changes to our DNA sequence. This happens when cells make copies of themselves during cell division. Mutation is the ultimate source of human genetic variation and has evolutionary and disease genetics implications. A mutation affecting our genes might give birth to a genetic disorder. But just because you have a mutation doesn’t mean it will be a genetic disorder.

That is why researchers at DeepMind, the artificial intelligence arm of Google, have announced that they have trained a machine learning model called AlphaMissense to classify which DNA variations in our genomes are likely to cause disease.

Past tests have been conducted on pigs.

On Tuesday, Elon Musk’s Neuralink announced it was ready to start its first human trials. “We are happy to announce that we’ve received approval from the reviewing independent institutional review board and our first hospital site to begin recruitment for our first-in-human clinical trial,” noted a blog on the company’s website.

The PRIME Study (short for Precise Robotically Implanted Brain-Computer Interface) – a groundbreaking investigational medical device trial for our fully-implantable, wireless brain-computer interface (BCI) – aims to evaluate the safety of our implant (N1) and surgical robot (R1) and assess the initial functionality of our BCI for… More.


NurPhoto/Getty Images.

We are happy to announce that we’ve received approval from the reviewing independent institutional review board and our first hospital site to begin recruitment for our first-in-human clinical trial, noted a blog on the company’s website.

As befits the child of a scientist, Martin Picard’s young son, 3, is already learning about biology with an age-appropriate textbook, “Cell Biology for Babies.” Picard winces a little whenever the book calls mitochondria the “powerhouses of the cell” but figures he has plenty of time as his son grows older to explain why the tiny organelles are much more than simple energy sources.

Picard is a leading proponent of mitochondrial psychobiology (a phrase he coined), an emerging field that examines how psychological states like stress influence mitochondrial functions, which in turn influence mental and physical health.

“The powerhouse analogy is outdated and one-dimensional and can impede science by limiting researchers’ perceptions of what mitochondria can do,” says Picard, associate professor of behavioral medicine in psychiatry and neurology.

A virtual cell modeling system, powered by AI, will lead to breakthroughs in our understanding of diseases, argue the cofounders of the Chan Zuckerberg Initiative.

As the smallest living units, cells are key to understanding disease—and yet so much about them remains unknown. We do not know, for example, how billions of biomolecules—like DNA, proteins, and lipids—come together to act as one cell. Nor do we know how our many types of cells interact within our bodies. We have limited understanding of how cells, tissues, and organs become diseased and what it takes for them to be healthy.

AI can help us answer these questions and apply that knowledge to improve health and well-being worldwide—if… More.

CHOP researchers established the feasibility of an artificial womb called the “Biobag” to nurture a premature lamb in 2017.

The US Food and Drug Administration (FDA) will hold a meeting of independent advisors on September 19–20. The meeting’s agenda is to discuss the viability of clinical trials using artificial womb technology to improve the survival and health of extremely preterm newborns.

Reportedly, during this meeting, regulators and experts will delve into ethical concerns and evaluate various crucial aspects, including the potential steps and design of human trials for this technology.

Get my FREE guide 3 Steps to Reverse Aging when you sign up for my weekly health picks 👉 https://bit.ly/IncreaseHealthspan.

There is powerful science behind how our beliefs inform our genetic expression. It’s not our genes alone that dictate our health outcomes, rather it’s the biology of belief that determines our destiny.

Today on The Doctor’s Farmacy, I’m excited to talk to Dr. Bruce Lipton about how exactly our thoughts determine our genetic expression, and how we can influence our health using our minds.

Dr. Bruce Lipton is a stem cell biologist and author of the bestselling books, The Biology of Belief, Spontaneous Evolution, and The Honeymoon Effect. Dr. Lipton is the recipient of the prestigious Japanese Goi Peace Award and has been listed in the top 100 of “the world’s most spiritually influential people” by Briton’s Watkins Journal for the last 13 years.

This episode is brought to you by Rupa Health, BiOptimizers, LMNT, and Apollo.

Rupa Health is a place where Functional Medicine practitioners can access more than 3,000 specialty lab tests from over 35 labs like DUTCH, Vibrant America, Genova, and Great Plains. You can check out a free, live demo with a Q&A or create an account at https://RupaHealth.com.