A new study suggests that astrocytes, a type of brain cell, are important for connecting amyloid-β with the early stages of tau pathology, which could change how we define early Alzheimer’s disease.
Category: biotech/medical – Page 751
A team of medical scientists at The Catholic University of America, in Washington, D.C., working with a colleague from Purdue University, has developed a way to engineer the bacteriophage T4 to serve as a vector for molecular repair. The study is reported in the journal Nature Communications.
Prior research has shown that many human ailments arise due to genetic mutations: cystic fibrosis, Down syndrome, sickle cell disease and hemophilia are just a few. Logic suggests that correcting such genetic mutations could cure these diseases. So researchers have been working toward developing gene editing tools that will allow for safe editing of genes.
One of the most promising is the CRISPR gene editing system. In this new effort, the research team took a more general approach to solving the problem by working to develop a vector that could be used to carry different kinds of tools to targeted cells and then enter them to allow for healing work to commence.
An explosion of skeletal editing methods to insert, delete or swap individual atoms in molecular backbones could accelerate drug discovery.
Researchers in Canada and the United States have used deep learning to derive an antibiotic that can attack a resistant microbe, acinetobacter baumannii, which can infect wounds and cause pneumonia. According to the BBC, a paper in Nature Chemical Biology describes how the researchers used training data that measured known drugs’ action on the tough bacteria. The learning algorithm then projected the effect of 6,680 compounds with no data on their effectiveness against the germ.
In an hour and a half, the program reduced the list to 240 promising candidates. Testing in the lab found that nine of these were effective and that one, now called abaucin, was extremely potent. While doing lab tests on 240 compounds sounds like a lot of work, it is better than testing nearly 6,700.
Interestingly, the new antibiotic seems only to be effective against the target microbe, which is a plus. It isn’t available for people yet and may not be for some time — drug testing being what it is. However, this is still a great example of how machine learning can augment human brainpower, letting scientists and others focus on what’s really important.
Contemporary DNA
DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).
Crispre cas 9.
A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in 80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.
The development of comparative gene editing strategies improves the translatability of animal research.
A scientist claims he has increased his lifespan by 20 percent after living 93 days underwater.
Joseph Dituri, 55, a retired Naval officer, has been living inside a 100-square-foot pod at the bottom of the Atlantic Ocean for 93 days, researching how a pressurized environment impacts the human body.
The mission was also designed to beat the world record for living underwater — the previous stay was 73 days.
USC Dornsife researchers employ artificial intelligence to unveil the intricate world of DNA structure and chemistry, enabling unprecedented insights into gene regulation and disease.
Atom for the first time. Using a pioneering technique known as synchrotron X-ray scanning tunneling microscopy (SX-STM), the team was able to identify and characterize individual atoms, opening new possibilities in environmental, medical, and quantum research.
A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, has taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, and could revolutionize the way scientists detect materials.