Toggle light / dark theme

Other questions to the experts in this canvassing invited their views on the hopeful things that will occur in the next decade and for examples of specific applications that might emerge. What will human-technology co-evolution look like by 2030? Participants in this canvassing expect the rate of change to fall in a range anywhere from incremental to extremely impactful. Generally, they expect AI to continue to be targeted toward efficiencies in workplaces and other activities, and they say it is likely to be embedded in most human endeavors.

The greatest share of participants in this canvassing said automated systems driven by artificial intelligence are already improving many dimensions of their work, play and home lives and they expect this to continue over the next decade. While they worry over the accompanying negatives of human-AI advances, they hope for broad changes for the better as networked, intelligent systems are revolutionizing everything, from the most pressing professional work to hundreds of the little “everyday” aspects of existence.

One respondent’s answer covered many of the improvements experts expect as machines sit alongside humans as their assistants and enhancers. An associate professor at a major university in Israel wrote, “In the coming 12 years AI will enable all sorts of professions to do their work more efficiently, especially those involving ‘saving life’: individualized medicine, policing, even warfare (where attacks will focus on disabling infrastructure and less in killing enemy combatants and civilians). In other professions, AI will enable greater individualization, e.g., education based on the needs and intellectual abilities of each pupil/student. Of course, there will be some downsides: greater unemployment in certain ‘rote’ jobs (e.g., transportation drivers, food service, robots and automation, etc.).”

Graphene-based two-dimensional materials have recently emerged as a focus of scientific exploration due to their exceptional structural, mechanical, electrical, optical, and thermal properties. Among them, nanosheets based on graphene-oxide (GO), an oxidized derivative of graphene, with ultrathin and extra wide dimensions and oxygen-rich surfaces are quite promising.

Functional groups containing oxygen, such as carboxy and acidic hydroxy groups, generate dense negative charges, making GO nanosheets colloidally stable in water. As a result, they are valuable building blocks for next-generation functional soft materials.

In particular, thermoresponsive GO nanosheets have garnered much attention for their wide-ranging applications, from smart membranes and surfaces and recyclable systems to hydrogel actuators and biomedical platforms. However, the prevailing synthetic strategies for generating thermoresponsive behaviors entail modifying GO surfaces with thermoresponsive polymers such as poly (N-isopropylacrylamide). This process is complex and has potential limitations in subsequent functionalization efforts.

A comprehensive review in the journal Cell outlines a unified framework for classifying and validating aging biomarkers, aiming to streamline their integration into clinical research and practice. The study categorizes biomarkers into types like molecular, functional, and clinical, and sets criteria for their feasibility, validity, and applicability, all with the goal of better understanding and intervening in the aging process.

A new blood-based diagnostic test could be a major advancement for the treatment of Parkinson’s, a disease that afflicts 10 million people worldwide and is the second-most common neurodegenerative disease after Alzheimer’s.

Building on the knowledge that mitochondrial dysfunction plays a prominent role in the pathogenesis of Parkinson’s a team of researchers, led by neuroscientists at Duke Health, have developed an assay that enables the accurate, real-time quantification of mitochondrial DNA damage in a scalable platform [1]. The results of the study, which received support in part from The Michael J Fox Foundation for Parkinson’s Research, have been published in the journal Science Translational Medicine.

“Currently, Parkinson’s disease is diagnosed largely based on clinical symptoms after significant neurological damage has already occurred,” said senior author Laurie Sanders, PhD, an associate professor in Duke School of Medicine’s departments of Neurology and Pathology and member of the Duke Center for Neurodegeneration and Neurotherapeutics.

Organometallic compounds, molecules made up of metal atoms and organic molecules, are often used to accelerate chemical reactions and have played a significant role in advancing the field of chemistry.

Metallocenes, a type of organometallic compound, are known for their versatility and special “sandwich” structure. Their discovery was a significant contribution to the field of organometallic chemistry and led to the awarding of the Nobel Prize in Chemistry in 1973 to the scientists who discovered and explained their sandwich structure.

The versatility of metallocenes is due to their ability to “sandwich” many different elements to form a variety of compounds. They can be used in various applications, including the production of polymers, glucometers—used to measure the amount of glucose in the blood, perovskite , and as a catalyst, a substance that increases the rate of a chemical reaction without being consumed or changed by the reaction itself.

Metastasis is one of the main obstacles in treating cancer. Studying circulating tumor cells (CTCs) and CTC clusters at the single-cell level can help us understand the underlying mechanisms and develop better therapeutic strategies for patients. Automated solutions can vastly simplify protocols for CTC isolation for molecular characterization at the single-cell level.

What are circulating tumor cells?

CTCs are cells that break away from the primary tumor and enter the bloodstream. Once in the blood, CTCs can adapt to the microenvironment of additional sites, forming a new tumor. This process, called metastasis, is responsible for over 90% of cancer-related deaths and is an active area of research.

A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center sheds new light on why tumors that have spread to the brain from other parts of the body respond to immunotherapy while glioblastoma, an aggressive cancer that originates in the brain, does not.

In people with tumors that originated in other parts of the body but spread to the , treatment with a type of immunotherapy called appears to elicit a significant increase in both active and exhausted T cells—signs that the T cells have been triggered to fight the cancer. The reason the same thing doesn’t occur in people with glioblastoma is that anti-tumor immune responses are best initiated in draining lymph nodes outside of the brain, and that process does not occur very effectively in glioblastoma cases.

To date, immunotherapy has not been effective in treating glioblastoma, but it has been shown to slow or even eradicate other types of cancer, such as melanoma, which frequently metastasizes to the brain.

Using a standardized assessment, researchers in the UK compared the performance of a commercially available artificial intelligence (AI) algorithm with human readers of screening mammograms. Results of their findings were published in Radiology.

Mammographic does not detect every . False-positive interpretations can result in women without cancer undergoing unnecessary imaging and biopsy. To improve the sensitivity and specificity of screening mammography, one solution is to have two readers interpret every mammogram.

According to the researchers, double reading increases cancer detection rates by 6 to 15% and keeps recall rates low. However, this strategy is labor-intensive and difficult to achieve during reader shortages.

Cancer is a deadly disease with multiple risk factors. Risk factors are dependent on the type of cancer and each one is treated differently. The heterogeneity of various cancers is the main reason there is no cure. Additionally, cancer evolves and can also come back after being treated and lying dormant for years. Therefore, it is very difficult to find an effective treatment that provides high quality of life for patients.

One aggressive cancer that is difficult to treat includes glioblastoma. This brain tumor is fast-growing and results in the form of many different symptoms including headache, vomiting, and seizures. Unfortunately, there is not much known on glioblastoma. The cause of this disease is unclear and treatment options are limited. This tumor stays in the brain and does not metastasize, but because of its location, glioblastoma is hard to treat. Currently, treatment options include radiation, chemotherapy, and surgery with limited success. Even immunotherapy, a more recent treatment, which activates the body’s immune system to kill the tumor has limited efficacy in the brain.

A group of researchers led by Dr. Robert Prins at the David Geffen School of Medicine at University of California Los Angeles (UCLA) recently published an article in the Journal of Clinical Investigation (JCI) describing new research that could help overcome obstacles to glioblastoma treatment. More specifically, Prins and colleagues have reported why glioblastoma that originates from other parts of the body respond better to immunotherapy compared to glioblastoma that originates in the brain.