Toggle light / dark theme

Objective: This study describes the expression profiles and roles of cardiac pigment epithelium-derived factor (PEDF) during cardiac development.

Methods: Gene datasets from the Gene Expression Omnibus (GEO) database were used to analyze the correlation between cardiac PEDF expression and heart disease. Western blotting.

Immunohistochemistry, histological staining and echocardiography were used to assess the expression patterns and functions of PEDF during cardiac development.

Have you ever wondered about the future of aging? What if I told you that we’re on the brink of a revolution that could redefine what it means to grow old … with gene therapy.

Today, I want to introduce you to a woman who is not just imagining this future, but actively creating it.

Meet Liz Parrish, the trailblazing CEO of BioViva, a biotech company that’s pushing the boundaries of what’s possible with gene therapies.

The USPSTF recommends that adults at elevated risk for lung cancer receive a low-dose CT scan each year, which was shown to reduce lung cancer deaths in the 2011 National Lung Screening Trial (NLST). The 2021 USPSTF criteria applies to adults aged 50 to 80 who have at least a 20 PY smoking history and currently smoke or have quit within the past 15 years.

“For individuals who currently are not eligible for lung cancer screening, a positive test may help to identify those possibly at risk for lung cancer death,” said co-corresponding author Edwin Ostrin, MD, PhD, assistant professor of general internal medicine. “We envision this as a tool that could be deployed worldwide, as the future of early detection of this disease.”

Lung cancer causes an estimated 25% of cancer deaths. Early detection improves prospects of survival, but most countries do not screen for it. Fewer than half of all U.S. cases are among people who are eligible under USPSTF guidelines.

Michael Shiloh had been studying tuberculosis for about two decades when he started wondering about a seemingly basic question: What makes people with TB cough? This is the disease’s hallmark symptom and a main mode of transmission, but despite training as an infectious disease physician and many years of probing the pathogen as a researcher, Shiloh realized that he didn’t know. A quick search of the literature suggested that “essentially nothing had been studied about it, at least not at the molecular level,” he says.

Elucidating the role of cough in illness means first appreciating its role in health. “Cough is one of these critical defensive processes that we have to clear the respiratory system,” says Stuart Mazzone, a neuroscientist at the University of Melbourne. But it also contributes to disease spread, as research by Shiloh, now at the University of Texas Southwestern Medical Center, and others has described. And dysfunctional control of coughing — resulting in too much coughing or not enough — can cause serious health problems.

Here’s a look at how and why we cough, and some of the ways that coughing can go wrong.

The findings are published in Cancer Cell in an article titled, “Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression.”

“Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets,” wrote the researchers. “Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs.”

“Gastric adenocarcinoma exhibits a high degree of heterogeneity with respect to both its phenotypes and molecular characteristics, but research around it has lagged behind other cancer types,” explained Linghua Wang, MD, PhD, associate professor of genomic medicine. “Most studies have concentrated on tumor cells and largely overlooked the immune and stromal cells within the tumor microenvironment, which are very dynamic and play critical roles in cancer progression. This study represents the largest single-cell RNA sequencing cohort of gastric adenocarcinoma to date and brings important new insights into how these cell populations impact disease progression.”

A team of molecular and cellular biologists from several institutions in Taiwan and one in the Philippines has identified some of the mechanical waves involved in the regeneration of amputated tailfins in zebrafish. In their study, reported in the journal Nature Physics, the group studied zebrafish regrowth after their tailfins were removed.

Prior research has shown that many have the ability to regrow (mostly appendages) when they are lost, typically after incidents of fighting or hunting. Prior research has also shown that for most such creatures, the amount of regrowth is proportional to the amount lost. The generation of mechanical waves are known to play a role in controlling epithelial cell expansion, the means by which new tissues are generated.

In this new effort, the researchers examined the role of wound healing in —most specifically, if it is involved in positioning of the regrown tissue. To find out, the researchers closely studied the process by which new tailfins grow on after .

Researchers at Tel Aviv University (TAU) say they have identified two key components of the body’s immune response to severe infectious disease, potentially paving the way for personalized and more effective treatments in the field of infectious diseases.

An infectious disease is caused by a microorganism such as a bacterium or a virus entering the body and causing damage to the cells. These cells can also be damaged by the immune system fighting the infection, such as in the case of inflammation.

The body’s reaction to infection has previously been viewed as a monolithic unit, but now the TAU researchers have been able to locate two main markers in the blood that are triggered by infection.