Toggle light / dark theme

New research from the University of Montana and its partners suggests artificial intelligence can match the top 1% of human thinkers on a standard test for creativity.

The study was directed by Dr. Erik Guzik, an assistant clinical professor in UM’s College of Business. He and his partners used the Torrance Tests of Creative Thinking, a well-known tool used for decades to assess human creativity.

The researchers submitted eight responses generated by ChatGPT, the application powered by the GPT-4 engine. They also submitted answers from a of 24 UM students taking Guzik’s entrepreneurship and personal finance classes. These scores were compared with 2,700 college students nationally who took the TTCT in 2016. All submissions were scored by Scholastic Testing Service, which didn’t know AI was involved.

New research published in Scientific Reports suggests that microbes in the human gut and mouth can impact how long people live [1].

Bacteria and other microbes are often associated with diseases, but disease-causing microbes are only a minority. The majority of microbes are harmless or beneficial to humans, and we have millions of them living inside and outside us. Researchers refer to this community as the microbiota.

In previous research, scientists had noticed an association between microbiota and longevity [2]. However, the association between two things does not necessarily mean that one is causing the other. Therefore, in this new paper, researchers explored potential causal relationships between gut and mouth microbes’ composition and longevity in order to determine what compositions of microbiota result in increases or decreases in lifespan.

Evolutionary biologist Jay T. Lennon’s research team has been studying a synthetically constructed minimal cell that has been stripped of all but its essential genes. The team found that the streamlined cell can evolve just as fast as a normal cell—demonstrating the capacity for organisms to adapt, even with an unnatural genome that would seemingly provide little flexibility.

Details about the study can be found in a paper featured in Nature. Roy Z. Moger-Reischer, a Ph.D. student in the Lennon lab at the time of the study, is first author on the paper.

“Listen, if there’s one thing the history of evolution has taught us is that life will not be contained. Life breaks free. It expands to new territories, and it crashes through barriers painfully, maybe even dangerously, but… ife finds a way,” said Ian Malcolm, Jeff Goldblum’s character in Jurassic Park, the 1993 science fiction film about a park with living dinosaurs.

“It tastes like chicken.” That’s a common review of UPSIDE Foods’ new trial product. Perhaps that’s not surprising: it is, after all, chicken — at the cellular level. But the fillets are not from a slaughterhouse. They are grown in bioreactors in an urban factory in California.

Alittle over a decade ago, only a handful of researchers were investigating the potential of laboratory-made meat. The world’s first cultured beef burger, which reportedly cost US$325,000, was made by Maastricht University biomedical engineer Mark Post, who ate it at a press conference in 2013. Such products are now much closer to market: more than 150 companies around the world are working on cultured meat (from ground beef to steaks, chicken, pork and fish), milk or related ‘cellular agriculture’ products, including leather.


Companies making cultured meat are attracting billions of dollars of investment. Here are their biggest challenges.

Camera sensitive enough to spot a single photon finally achieved by researchers in colorado.


A team of researchers from the National Institute of Standards and Technology in Boulder, Colorado, has successfully developed a super-sensitive camera capable of detecting a single photon.

This remarkable achievement opens up new avenues for scientific exploration and holds significant potential for applications in quantum computing, communications, space exploration, and medical research.

Summary: A new study reveals that the composition of scent compounds on a person’s hand can accurately determine their sex.

The analysis, using mass spectrometry, successfully predicted an individual’s sex with an impressive accuracy rate of 96.67%. In criminal investigations, this could provide valuable trace evidence where other discriminative evidence like DNA is lacking.

Further validation of these techniques could even reveal other individual characteristics such as age and racial or ethnic group.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

There are moments when scientists come close to creating the future artists envision for us. Researchers at the University of Tokyo have taken a step closer to bringing a sci-fi standard into reality: living human skin for robots.

Made from real cells, the living skin not only has the realistic texture that faux skin has difficulty mimicking, but also the ability to keep out water and heal itself.

“I think living skin is the ultimate solution to give robots the look and touch of living creatures since it is exactly the same material that covers animal bodies,” said Shoji Takeuchi, first author of the study and a project professor at the University of Tokyo who works on biohybrid systems.