Toggle light / dark theme

How the “powerhouse of the cell” could be cancer’s Achilles heel

A relatively new way to attack cancer, called immunotherapy, is revolutionizing cancer treatment by enabling patients’ own immune systems to attack cancer cells. It hasn’t worked for many kinds of cancers, though — evading the immune system is one of the first tricks that cancer learns. As it turns out, many cancers are also pretty good at hiding from immunotherapies.

In a recent study published in the journal Science, though, Salk Institute researchers have discovered a new way to make cancer visible to immunotherapy. To do this, the team reprogrammed mitochondria — the organelle widely memed as the “powerhouse of the cell” — to make cancer cells easier to find and kill.

The engine of cancer: What connects mitochondria and cancers? Another hallmark of cancer is their uncontrolled growth. Fueling this rapid and relentless proliferation requires a lot of energy. This increased demand is met by changes in how mitochondria function in cancer cells.

Ink Alert: Discrepancies Found in Tattoo Ink Composition

Dr. John Swierk: “This is also the first study to explicitly look at inks sold in the United States and is probably the most comprehensive because it looks at the pigments, which nominally stay in the skin, and the carrier package, which is what the pigment is suspended in.”


Do the ingredients in tattoo inks match the labels on their respective bottles? This is what a recent study published in Analytical Chemistry hopes to address as a team of researchers from Binghamton University investigated the accuracy of ink ingredients and what’s labeled on their containers. This study holds the potential to help scientists, artists, and their customers better understand the health risks, to include allergic reactions and other risks, of using the wrong ink ingredients for tattoos.

For the study, the researchers examined ingredients from 54 inks emanating from nine common brands within the United States with the goal of ascertaining their exact chemical compositions compared to what was labeled on their respective bottles. In the end, the researchers identified that 45 of the 54 inks possessed a myriad of pigments and/or additives that were not properly labeled on the bottles that could pose health risks to customers receiving ink tattoos, including allergic skin reactions and other long-term health risks, including non-skin-related risks, such as cancer. Despite the alarming findings, the researchers could not ascertain which unlisted ingredients were intentionally or accidentally added to the inks.

This study comes as Congress passed the Modernization of Cosmetics Regulation Act (MoCRA) in 2022, which grants the Food and Drug Administration (FDA) first-time power to monitor tattoo ink ingredients and their labels. Until MoCRA, the cosmetic industry was almost entirely unregulated.

Researchers hack a 3D printer to speed up fabrication of bioelectronics

The speed of innovation in bioelectronics and critical sensors gets a new boost with the unveiling of a simple, time-saving technique for the fast prototyping of devices.

A research team at KTH Royal Institute of Technology and Stockholm University reported a simple way to fabricate electrochemical transistors using a standard Nanoscribe 3D micro printer. Without cleanroom environments, solvents, or chemicals, the researchers demonstrated that 3D micro printers could be hacked to laser print and micropattern semiconducting, conducting, and insulating polymers.

Anna Herland, professor in Micro-and Nanosystems at KTH, says the printing of these polymers is a key step in prototyping new kinds of electrochemical transistors for medical implants, wearable electronics and biosensors.

How neurotransmitter receptors transport calcium, a process linked with origins of neurological disease

A new study from a team of McGill University and Vanderbilt University researchers is shedding light on our understanding of the molecular origins of some forms of autism and intellectual disability.

For the first time, researchers were able to successfully capture atomic resolution images of the fast-moving ionotropic glutamate receptor (iGluR) as it transports calcium. iGluRs and their ability to transport calcium are vitally important for many brain functions such as vision or other information coming from sensory organs. Calcium also brings about changes in the signaling capacity of iGluRs and nerve connections, which are key cellular events that lead to our ability to learn new skills and form memories.

IGluRs are also key players in and their dysfunction through has been shown to give rise to some forms of autism and intellectual disability. However, basic questions about how iGluRs trigger biochemical changes in the brain’s physiology by transporting calcium have remained poorly understood.

Lab-spun sponges form perfect scaffolds for growing skin cells to heal wounds

A new technique for electrospinning sponges has allowed scientists from the University of Surrey to directly produce 3D scaffolds—on which skin grafts could be grown from the patient’s own skin.

Electrospinning is a technique that electrifies droplets of liquid to form fibers from plastics. Previously, scientists had only been able to make 2D films. This is the first time anybody has electro-spun a 3D structure directly and on-demand so that it can be produced to scale. The research is published in the journal Nanomaterials.

Chloe Howard, from Surrey’s School of Computer Science and Electronic Engineering, said, After spinning these scaffolds, we grew skin cells on them. Seven days later, they were twice as viable as cells grown on 2D films or mats. They even did better than cells grown on plasma-treated polystyrene—previously, the gold standard. They were very happy cells on our 3D scaffolds.

How to track important changes in a dynamic network

Networks can represent changing systems, like the spread of an epidemic or the growth of groups in a population of people. But the structure of these networks can change, too, as links appear or vanish over time. To better understand these changes, researchers often study a series of static “snapshots” that capture the structure of the network during a short duration.

Network theorists have sought ways to combine these snapshots. In a new paper in Physical Review Letters, a trio of SFI-affiliated researchers describe a novel way to aggregate static snapshots into smaller clusters of networks while still preserving the dynamic nature of the system. Their method, inspired by an idea from quantum mechanics, involves testing successive pairs of network snapshots to find those for which a combination would result in the smallest effect on the dynamics of the system—and then combining them.

Importantly, it can determine how to simplify the history of the network’s structure as much as possible while maintaining accuracy. The math behind the method is fairly simple, says lead author Andrea Allen, now a data scientist at Children’s Hospital of Philadelphia.

Ancient retroviruses played a key role in the evolution of vertebrate brains, suggest researchers

Researchers report in the journal Cell that ancient viruses may be to thank for myelin—and, by extension, our large, complex brains.

The team found that a retrovirus-derived genetic element or “retrotransposon” is essential for myelin production in mammals, amphibians, and fish. The , which they dubbed “RetroMyelin,” is likely a result of ancient viral infection, and comparisons of RetroMyelin in mammals, amphibians, and fish suggest that retroviral infection and genome-invasion events occurred separately in each of these groups.

“Retroviruses were required for vertebrate evolution to take off,” says senior author and neuroscientist Robin Franklin of Altos Labs-Cambridge Institute of Science. “If we didn’t have retroviruses sticking their sequences into the vertebrate genome, then myelination wouldn’t have happened, and without myelination, the whole diversity of vertebrates as we know it would never have happened.”

3D printed titanium structure shows supernatural strength

A 3D printed ‘metamaterial’ boasting levels of strength for weight not normally seen in nature or manufacturing could change how we make everything from medical implants to aircraft or rocket parts.

RMIT University researchers created the new metamaterial—a term used to describe an with not observed in nature—from common titanium alloy.

But it’s the material’s unique lattice structure design, recently revealed in the journal Advanced Materials, that makes it anything but common: tests show it’s 50% stronger than the next strongest alloy of similar density used in aerospace applications.

Experimental Drugs Grown in Space Return to Earth For Analysis

On Wednesday, February 21st, at 01:40 p.m. PST (04:40 p.m. EST), an interesting package returned to Earth from space.

This was the capsule from the W-1 mission, an orbital platform manufactured by California-based Varda Space Industries, which landed at the Utah Test and Training Range (UTTR). Even more interesting was the payload, which consisted of antiviral drugs grown in the microgravity environment of Low Earth Orbit (LEO).

The mission is part of the company’s goal to develop the infrastructure to make LEO more accessible to commercial industries.

Risk Factors for Young-Onset Dementia

Investigators identified 15 factors that affect risk for young-onset dementia.


Limited data are available on risk factors for young-onset dementia. In this study, researchers assessed 39 potential risk factors for young-onset dementia from data in the UK Biobank. Participants 65 years of age or older without a dementia diagnosis were included in the analysis. Potential risk factors were grouped into sociodemographic factors, genetic factors, lifestyle factors, environmental factors, blood marker factors, cardiometabolic factors, psychiatric factors, and other risk factors.

Among 359,052 participants, the mean age at baseline was 55 years and 55% were women. There were 485 incident all-cause young-onset dementia cases after a mean follow-up of 8 years. Incident young-onset dementia increased with age and was more common in men. Fewer years of formal education, lower socioeconomic status, the presence of two apolipoprotein E ℇ4 alleles, no alcohol use, alcohol use disorder, social isolation, vitamin D deficiency (1 mg/dL), lower handgrip strength, hearing impairment, orthostatic hypotension, stroke, diabetes, heart disease, and depression were associated with higher risk for young-onset dementia in fully adjusted models. Men with diabetes were more likely to have young-onset dementia than men without diabetes, and women with high C-reactive protein were more likely to have young-onset dementia than women with low C-reactive protein levels.

/* */