Toggle light / dark theme

How early-stage cancer cells hide from the immune system

One of the immune system’s primary roles is to detect and kill cells that have acquired cancerous mutations. However, some early-stage cancer cells manage to evade this surveillance and develop into more advanced tumors.

A new study from MIT and Dana-Farber Cancer Institute has identified one strategy that helps these avoid immune detection. The researchers found that early in colon cancer development, cells that turn on a gene called SOX17 can become essentially invisible to the immune system.

If scientists could find a way to block SOX17 function or the pathway that it activates, this may offer a new way to treat early-stage cancers before they grow into larger tumors, the researchers say.

Bioinformatics approach offers a step toward personalized immunotherapy for all

Most cancers are thought to evade the immune system. These cancers don’t carry very many mutations, and they aren’t infiltrated by cancer-fighting immune cells. Scientists call these cancers immunologically “cold.”

Now new research suggests such cancers aren’t as “cold” as once thought. Researchers from the La Jolla Institute for Immunology (LJI), UC San Diego Moores Cancer Center, and UC San Diego, have found that patients with “cold” tumors actually do make cancer-fighting T cells.

This discovery opens the door to developing vaccines or therapies to increase T cell numbers and treat many more types of cancer than currently thought possible.

Sensory nerves appear to drive head and neck cancer growth

Researchers at the University of Colorado Anschutz Medical Campus studying interactions between nerves and tumor microenvironments have found that commonly used drugs like botox may stop or slow the progression of certain head and neck cancers.

The study, published online today in the journal Med, examined how nerves within the tumor environment impact the immune system and cancer growth.

“We have long known that the intensity of nerve interactions within the are associated with worse outcomes in head and neck squamous cell carcinoma,” said the study’s lead author Laurel Darragh, an MD/Ph. D. student focused on radiation oncology at the University of Colorado School of Medicine. “This prompted us to investigate how these nerve interactions impact the adaptive immune system and tumor growth.”

Insulin-inhibitory receptor research offers hope for type 2 diabetes therapy

Research targeting the insulin-inhibitory receptor, or inceptor, unveils promising avenues for beta cell protection, offering hope for causal diabetes therapy.

A novel study in mice with diet-induced obesity demonstrates that the knock-out of inceptor enhances , prompting its further exploration as a for type 2 treatment.

These findings, led by Helmholtz Munich in collaboration with the German Center for Diabetes Research, the Technical University of Munich, and the Ludwig-Maximilians-University Munich, drive advancements in diabetes research. They have been published in Nature Metabolism.

More than just neurons: Scientists create new model for studying human brain inflammation

The brain is typically depicted as a complex web of neurons sending and receiving messages. But neurons only make up half of the human brain. The other half—roughly 85 billion cells—are non-neuronal cells called glia.

The most common type of glial cells are , which are important for supporting neuronal health and activity. Despite this, most existing laboratory models of the human brain fail to include astrocytes at sufficient levels or at all, which limits the models’ utility for studying brain health and disease.

Now, Salk scientists have created a novel organoid model of the human brain—a three-dimensional collection of cells that mimics features of human tissues—that contains mature, functional astrocytes. With this astrocyte-rich model, researchers will be able to study inflammation and stress in aging and diseases like Alzheimer’s with greater clarity and depth than ever before.

Light stimulates a new twist for synthetic chemistry

Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.

Researchers at Hokkaido University, led by Assistant Professor Akira Katsuyama and Professor Satoshi Ichikawa at the Faculty of Pharmaceutical Sciences, have extended the toolkit of synthetic chemistry by making a new category of molecules that can be induced to undergo an internal rotation on interaction with . Similar processes are believed to be important in some natural biological systems.

Synthetic versions might be exploited to perform photochemical switching functions in molecular computing and sensing technologies or in bioactive molecules, including drugs. Their report is pending in Nature Chemistry.

Linking environmental influences, genetic research to address concerns of genetic determinism of human behavior

It has long been known that there is a complex interplay between genetic factors and environmental influences in shaping behavior. Recently it has been found that genes governing behavior in the brain operate within flexible and contextually responsive regulatory networks. However, conventional genome-wide association studies (GWAS) often overlook this complexity, particularly in humans where controlling environmental variables poses challenges.

In a new perspective article published on February 27 in the open-access journal PLOS Biology by researchers from the University of Illinois Urbana-Champaign and Rutgers University, U.S., the importance of integrating environmental effects into genetic research is underscored. The authors discuss how failure to do so can perpetuate deterministic thinking in genetics, as historically observed in the justification of eugenics movements and, more recently, in cases of racially motivated violence.

The authors propose expanding GWAS by incorporating environmental data, as demonstrated in studies on aggression in , in order to get a broader understanding of the intricate nature of gene-environment interactions. Additionally, they advocate for better integration of insights from animal studies into human research. Animal experiments reveal how both genotype and environment shape brain gene regulatory networks and subsequent behavior, and these findings could better inform similar experiments with people.