Toggle light / dark theme

How the Inflammatory Process Is Influenced by the Circadian Rhythm

There are various studies that have explored the role of the body’s circadian rhythm in regulating immune activity. Disruptions in the circadian rhythms exacerbate inflammation. Researchers from the Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences have previously studied how the immune cells called macrophages are affected without an internal body clock. Now, new research by RCSI describes how macrophages work differently at various times of day and could pave the way for time-targeted treatments for inflammatory diseases. The research also illuminates a key role for mitochondria in driving daily changes in immune activity.

The findings are published in The FASEB Journal in an article titled, “Time-of-day control of mitochondria regulates NLRP3 inflammasome activation in macrophages.”

Macrophages release interleukin-1 (IL-1) cytokines in response to inflammatory stimuli, and the NLRP3 inflammasome mediates IL-1-family cytokine release via pyroptosis. Mitochondria play a multifaceted role regulating NLRP3 inflammasome activity. However, whether the macrophage clock regulates the NLRP3 inflammasome via mitochondrial control remains unclear.

Experimental drug that summons ‘warriors of the immune system’ shows early promise against non-Hodgkin lymphoma

An investigational therapy is demonstrating preclinical promise against non-Hodgkin lymphoma by boosting natural killer cells and efficiently annihilating the malignancy without toxicity to the patient, a team of cancer biologists in France has found.

The emerging is for B cell non-Hodgkin lymphoma, the most common form of lymphoma worldwide. Current therapies target the CD20+ protein on the surface of cancerous B cells but with limited efficacy. A newly developed antibody-based molecule targets B-non-Hodgkin lymphoma by engaging , warriors of the immune system. The experimental therapeutic is expected to help patients whose disease rebounds and is difficult to treat.

“Non-Hodgkin lymphoma is the most frequent hematological malignancy in humans, comprising nearly 3% of all diagnoses and oncology-related mortalities,” writes Dr. Olivier Demaria, lead author of the research published in Science Immunology.

Compact on-chip polarimeter measures light polarization with high accuracy

Reliably measuring the polarization state of light is crucial for various technological applications, ranging from optical communication to biomedical imaging. Yet conventional polarimeters are made of bulky components, which makes them difficult to reduce in size and limits their widespread adoption.

Researchers at the Shanghai Institute of Technical Physics (SITP) of the Chinese Academy of Sciences and other institutes recently developed an on-chip full-Stokes polarimeter that could be easier to deploy on a large scale. Their device, presented in a paper in Nature Electronics, is based on optoelectronic eigenvectors, mathematical equations that represent the linear relationship between the incident Stokes vector and a detector’s photocurrent.

“This work was driven by the growing demand for compact, high-performance polarization analysis devices in optoelectronics,” Jing Zhou, corresponding author of the paper, told Phys.org. “Traditional polarimeters, which rely on discrete bulky optical components, present significant challenges to miniaturization and limit their broader applicability. Our main goal is to develop an on-chip solution capable of direct electrical readout to reconstruct full-Stokes polarization states.”

New AI Discovery: The Hidden Factors Behind Faster Brain Aging

Scientists used AI to estimate the brain age of 739 healthy seniors and found that lifestyle and health conditions impact brain aging.

Researchers at Karolinska Institutet have used an AI tool to estimate the biological age of brains from MRI scans of 70-year-olds. Their analysis revealed that factors harmful to vascular health, such as inflammation and high blood sugar levels, are linked to older-looking brains, while a healthy lifestyle was associated with younger-looking brains. These findings were published today (December 20) in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association.

Leveraging AI to determine brain age.

Open-source platform provides a virtual playground for human-AI teaming

Research published in The American Journal of Human Genetics has identified a previously unknown genetic link to autism spectrum disorder (ASD). The study found that variants in the DDX53 gene contribute to ASD, providing new insights into the genetic underpinnings of the condition.

ASD, which affects more males than females, encompasses a group of neurodevelopmental conditions that result in challenges related to communication, social understanding and behavior. While DDX53, located on the X chromosome, is known to play a role in brain development and function, it was not previously definitively associated with autism.

In the study, researchers from The Hospital for Sick Children (SickKids) in Canada and the Istituto Giannina Gaslini in Italy clinically tested 10 individuals with ASD from eight different families and found that variants in the DDX53 gene were maternally inherited and present in these individuals. Notably, the majority were male, highlighting the gene’s potential role in the male predominance observed in ASD.

Fast, rewritable computing with DNA origami registers

FOR IMMEDIATE RELEASE

“High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register” ACS Central Science

DNA stores the instructions for life and, along with enzymes and other molecules, computes everything from hair color to risk of developing diseases. Harnessing that prowess and immense storage capacity could lead to DNA-based computers that are faster and smaller than today’s silicon-based versions. As a step toward that goal, researchers report in ACS Central Science a fast, sequential DNA computing method that is also rewritable — just like current computers.

Previously unknown genetic links provide insights into autism’s prevalence among males

Penn Engineers have modified lipid nanoparticles (LNPs)—the revolutionary technology behind the COVID-19 mRNA vaccines—to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how —short strings of —can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Scientists steer the development of stem cells to regenerate and repair organs

Investigators from Cedars-Sinai and the University of California, San Francisco (UCSF) have identified a new way to deliver instructions that tell stem cells to grow into specific bodily structures, a critical step in eventually regenerating and repairing tissues and organs.

The scientists engineered cells that form structures called “synthetic organizers.” These organizers provided instructions to the stem cells through called morphogens, which stimulated and enabled the stem cells to grow into specific complex tissues and organ-like assemblies.

The research was conducted with mouse , and the findings were published in Cell.

/* */