Toggle light / dark theme

Tumor metabolism is mandatory for the proper adaptation of malignant cells to the microenvironment and the acquisition of crucial cellular skills supporting the systemic spread of cancer. Throughout this journey, the contribution of the gut microbiota to the bioavailability of nutrients supporting the bioenergetic and biosynthetic requirements of malignant cells is an issue. This review will focus on the role of cysteine as a coin that mediates the metabolic crosstalk between microbiota and cancer. The key points enclose the way cysteine can be made available by the microbiota, by degradation of more complex compounds or by de novo synthesis, in order to contribute to the enrichment of the colonic microenvironment as well to the increase of cysteine systemic bioavailability. In addition, the main metabolic pathways in cancer that rely on cysteine as a source of energy and biomass will be pointed out and how the interspecific relationship with the microbiota and its dynamics related to aging may be relevant points to explore, contributing to a better understanding of cancer biology.

In the human organism, several interspecific relationships are constantly in operation, which are established between the different species that make up the microbiota and the human cells of the various organs where it resides. These interspecific relationships are mainly symbiotic in which both partners benefit. This is the case in health, but in disease, there are still some doubts about the role of the microbiota in the pathophysiology, namely, in the context of cancer, at both the organ and systemic levels. Currently, new clues have been proposed, and several studies have been developed to determine the influence of microbiota in cancer initiation, progression, and therapy, as it is extensively reviewed (17).

Metabolic adaptation in cancer is undoubtedly an essential requirement for the establishment, growth, and spread of a malignant neoplasm. Cellular plasticity is crucial for the adaptation of the tumor cell to the microenvironment of the organ where carcinogenesis occurs and to the emergence of stress conditions, such as drug exposure. Recent studies prove that cysteine metabolic circuits are a relevant component of the metabolic network, sustaining biosynthesis and bioenergetics and allowing chemoresistance (as reviewed in 8 10). This review intends to confront some of the most recent findings in the field of cysteine metabolism in cancer and the role of the intestinal microbiota in the dynamic balance of the control of cysteine bioavailability and its putative impact on the progression of oncological disease.

A team of scientists led by researchers from the University of Leicester has determined that genes responsible for learning, memory, aggression, and other complex behaviors emerged approximately 650 million years ago.

The research spearheaded by Dr. Roberto Feuda, of the Neurogenetic group within the Department of Genetics and Genome Biology, in collaboration with colleagues from the University of Leicester and the University of Fribourg (Switzerland), has recently been published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Natural killer (NK) cells represent an important class of immune cells involved in anti-tumor immunity. Once identifying a tumor cell, NK cells use small particles to kill the cancer cell.

Our understanding of the role of NK cells in anti-tumor immunity has led to the development of techniques that transfer NK cells from a healthy individual into a cancer patient. Such approaches, known as allogeneic NK cell adoptive transfer, have effectively treated certain types of leukemia and lymphoma. While such strategies can induce remission, clinical challenges about the survival and function of the transferred NK cells exist. Thus, research focused on enhancing the ability of transferred NK cells to survive and maintain their ability to function has become highly valuable in an effort to provide new, efficacious therapeutic options.

A new report published in Science Translational Medicine finds that a vitamin supplement could effectively improve the efficacy of NK cell adoptive transfer treatment. Supported by pre-clinical studies, the investigators conducted a phase 1 clinical trial to test a new method for processing NK cells before transferring them to a patient.

While the nanobio interaction is crucial in determining nanoparticles’ in vivo fate, a previous work on investigating nanoparticles’ interaction with biological barriers is mainly carried out in a static state. Nanoparticles’ fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons’ unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the “head” Fe3O4 having much larger density than the mPDA “cone”, it shows an asymmetric mass distribution, analogous to real badminton.

Many ophthalmologists’ offices around the country are home to a machine that enables doctors to take advantage of optical coherence tomography (OCT), a method of imaging the retina and other tissues in the eye. These OCT machines give doctors insight into the three-dimensional structures of their patients’ eyes, help them diagnose diseases and can even help save their patients’ sight.

The genesis of OCT machines began in the lab of Dr. James Fujimoto, who was inspired by advances in high-speed photography and lasers to start developing potential methods that would enable doctors to get better images of what was happening inside of people’s bodies. The goal, he told Forbes, was to develop… More.


In 1991, the trio published their first paper describing the technique they invented. “In less than a year, we were able to develop this new imaging technology, which in retrospect was pretty unusual,” Huang told Forbes.

Since the publication of that first paper, OCT has grown into a nearly $2 billion market. Doctors now routinely use the technology to diagnose diseases such as glaucoma, diabetes-related vision impairment and even coronary artery disease. “The impact on public health can be very large,” Fujimoto said. “If you can preserve vision, for example, to the point where patients can continue to drive a car, that’s a major change in lifestyle and an impact on quality of life.”

DeepMind has released a catalog of 71 million possible variants that can cause diseases.

Genetic mutations are changes to our DNA sequence. This happens when cells make copies of themselves during cell division. Mutation is the ultimate source of human genetic variation and has evolutionary and disease genetics implications. A mutation affecting our genes might give birth to a genetic disorder. But just because you have a mutation doesn’t mean it will be a genetic disorder.

That is why researchers at DeepMind, the artificial intelligence arm of Google, have announced that they have trained a machine learning model called AlphaMissense to classify which DNA variations in our genomes are likely to cause disease.

Past tests have been conducted on pigs.

On Tuesday, Elon Musk’s Neuralink announced it was ready to start its first human trials. “We are happy to announce that we’ve received approval from the reviewing independent institutional review board and our first hospital site to begin recruitment for our first-in-human clinical trial,” noted a blog on the company’s website.

The PRIME Study (short for Precise Robotically Implanted Brain-Computer Interface) – a groundbreaking investigational medical device trial for our fully-implantable, wireless brain-computer interface (BCI) – aims to evaluate the safety of our implant (N1) and surgical robot (R1) and assess the initial functionality of our BCI for… More.


NurPhoto/Getty Images.

As befits the child of a scientist, Martin Picard’s young son, 3, is already learning about biology with an age-appropriate textbook, “Cell Biology for Babies.” Picard winces a little whenever the book calls mitochondria the “powerhouses of the cell” but figures he has plenty of time as his son grows older to explain why the tiny organelles are much more than simple energy sources.

Picard is a leading proponent of mitochondrial psychobiology (a phrase he coined), an emerging field that examines how psychological states like stress influence mitochondrial functions, which in turn influence mental and physical health.

“The powerhouse analogy is outdated and one-dimensional and can impede science by limiting researchers’ perceptions of what mitochondria can do,” says Picard, associate professor of behavioral medicine in psychiatry and neurology.