Toggle light / dark theme

This is a nontoxic version of cancer treatment that works on any type of cancer.


Breast cancer is the most common cancer affecting women in Singapore. Treatment is multimodal and often involves surgery to remove the cancer and lymph nodes involved.

Adjuvant therapy, given after the , is used to irradiate and destroy micrometastases, which are in the blood stream or lymphatics, to decrease recurrence. This form of therapy is subdivided into local (radiotherapy) and systemic therapy (endocrine therapy, chemotherapy and targeted therapy).

Studies have shown that has increased with breast conserving therapy (BCT) where only the tumor and a margin is removed from the body post mastectomy, compared to full mastectomy alone, which removes all parts of the breast. For BCT, radiotherapy has to be administered after lumpectomy, which removes other from the breast and some normal tissue around it.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/product/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Protein indicators of subclinical peripheral heath in plasma were linked with markers of Alzheimer’s disease and neurodegeneration, cross-sectional proteomic analyses showed.

Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with plasma biomarkers of amyloid-beta, phosphorylated tau181 (p-tau181), neurofilament light (NfL, a measure of neuronal injury), and glial fibrillary acidic protein (GFAP, a measure of astrogliosis), even in people without cardiovascular or kidney disease, reported Keenan Walker, PhD, of the National Institute on Aging in Baltimore, and co-authors.

Proteomic indicators of body fat percentage, lean body mass, and visceral fat also were tied to p-tau181, NfL, and GFAP, Walker and colleagues wrote in the Annals of Neurology.

The sleep-wake cycle is among the most well-known circadian rhythms in the body and is severely affected in Alzheimer’s disease (AD). “Eighty percent of patients with AD suffer dysregulation or disruption of circadian rhythms, and the obvious clinical manifestations are the sleep-wake reversals,” Desplats said. “These patients are very sleepy during the day, agitated during the night, more confused, and sometimes aggressive.”

The feeding-fasting cycle is one of the strongest signals you can send the body to entrain the circadian clock.-Paula Desplats, University of California, San Diego

In a recent study published in Cell Metabolism, Desplats’s team used mice that are genetically engineered to develop AD to test whether intermittent fasting improves circadian rhythm abnormalities.3 Rather than restricting calories or making dietary changes, they simply limited food access to a defined six-hour daily window. They found that time-restricted eating improved sleep, metabolism, memory, and cognition, and reduced brain amyloid deposits and neuroinflammatory gene expression. “Many of the genes that are affected in AD are rhythmically expressed in the brain, meaning that they are in direct relation with the circadian clock and are involved in functions that are fundamental to AD pathology,” Desplats said. Intermittent fasting restored the rhythmic activity of these genes, but the real surprise was the extent to which it mitigated brain amyloid deposits and improved cognition and sleep-wake behaviors. “I didn’t expect that it will have such a dramatic impact on pathology,” Desplats said.

To get several of the modified chromosomes into the same yeast cell, Boeke’s team ran a lengthy cross-breeding program, mating cells with different combinations of genomes. At each step there was an extensive “debugging” process, as synthetic chromosomes interacted in unpredictable ways.

Using this approach, the team incorporated six full chromosomes and part of another one into a cell that survived and grew. They then developed a method called chromosome substitution to transfer the largest yeast chromosome from a donor cell, bumping the total to seven and a half and increasing the total amount of synthetic DNA to over 50 percent.

Getting all 17 synthetic chromosomes into a single cell will require considerable extra work, but crossing the halfway point is a significant achievement. And if the team can create yeast with a fully synthetic genome, it will mark a step change in our ability to manipulate the code of life.

Humankind on the verge of evolutionary traps, a new study: …For the first time, scientists have used the concept of evolutionary traps on human societies at large.


For the first time, scientists have used the concept of evolutionary traps on human societies at large. They find that humankind risks getting stuck in 14 evolutionary dead ends, ranging from global climate tipping points to misaligned artificial intelligence, chemical pollution, and accelerating infectious diseases.

The evolution of humankind has been an extraordinary success story. But the Anthropocene—the proposed geological epoch shaped by us humans—is showing more and more cracks. Multiple global crises, such as the COVID-19 pandemic, , , financial crises, and conflicts have started to occur simultaneously in something which scientists refer to as a polycrisis.

Humans are incredibly creative as a species. We are able to innovate and adapt to many circumstances and can cooperate on surprisingly large scales. But these capabilities turn out to have unintentional consequences. Simply speaking, you could say that the human species has been too successful and, in some ways, too smart for its own future good, says Peter Søgaard Jørgensen, researcher at the Stockholm Resilience Center at Stockholm University and at the Royal Swedish Academy of Sciences’ Global Economic Dynamics and the Biosphere program and Anthropocene laboratory.

A first-of-its-kind study led by the University of California, Irvine has revealed a new culprit in the formation of brain hemorrhages that does not involve injury to the blood vessels, as previously believed. Researchers discovered that interactions between aged red blood cells and brain capillaries can lead to cerebral microbleeds, offering deeper insights into how they occur and identifying potential new therapeutic targets for treatment and prevention.

The findings, published online in the Journal of Neuroinflammation, describe how the team was able to watch the process by which stall in the brain capillaries and then observe how the hemorrhage happens. Cerebral microbleeds are associated with a variety of conditions that occur at higher rates in older adults, including hypertension, Alzheimer’s disease and ischemic stroke.

“We have previously explored this issue in , but our current study is significant in expanding our understanding of the mechanism by which cerebral microbleeds develop,” said co-corresponding author Dr. Mark Fisher, professor of neurology in UCI’s School of Medicine. “Our findings may have profound clinical implications, as we identified a link between red blood cell damage and cerebral hemorrhages that occurs at the capillary level.”

As a dog owner of two little muppets, this is serious, scary, and deadly.

According to a KSLTV article, “veterinary laboratories in several states are investigating an unusual respiratory illness in dogs, and encouraging people to take basic precautions to keep their pets healthy as veterinarians try to pin down what’s making the animals sick.”

The “outbreak” of this respiratory illness is currently in three states: Oregon, Colorado, and New Hampshire. Research is being done right now in the Granite State.