The investigators carried out animal trials with the engineered AsCas12f system, partnering it with other genes and administering it to live mice. The encouraging results indicated that engineered AsCas12f has the potential to be used for human gene therapies, such as treating hemophilia.
The team discovered numerous potentially effective combinations for engineering an improved AsCas12f gene-editing system, and acknowledged the possibility that the selected mutations may not have been the most optimal of all the available mixes. As a next step, computational modeling or machine learning could be used to sift through the combinations and predict which might offer even better improvements.
And as the authors noted, by applying the same approach to other Cas enzymes, it may be possible to generate efficient genome-editing enzymes capable of targeting a wide range of genes. “The compact size of AsCas12f offers an attractive feature for AAV-deliverable gRNA and partner genes, such as base editors and epigenome modifiers. Therefore, our newly engineered AsCas12f systems could be a promising genome-editing platform … Moreover, with suitable adaptations to the evaluation system, this approach can be applied to enzymes beyond the scope of genome editing.”