Toggle light / dark theme

Wind-up nanotechnology

Carbon nanotubes are one of the most elastically strong materials out there.


When I was a kid, I used to take allowance money and occasionally buy rubber-band-powered balsa wood airplanes at a local store. Maybe you’ve seen these. You wind up the rubber band, which stretches the elastomer and stores energy in the elastic strain of the polymer, as in Hooke’s Law (though I suspect the rubber band goes well beyond the linear regime when it’s really wound up, because of the higher order twisting that happens). Rhett Alain wrote about how well you can store energy like this. It turns out that the stored energy per mass of the rubber band can get pretty substantial.

Carbon nanotubes are one of the most elastically strong materials out there. A bit over a decade ago, a group at Michigan State did a serious theoretical analysis of how much energy you could store in a twisted yarn made from single-walled carbon nanotubes. They found that the specific energy storage could get as large as several MJ/kg, as much as four times what you get with lithium ion batteries!

Now, a group in Japan has actually put this to the test, in this Nature Nano paper. They get up to 2.1 MJ/kg, over the lithium ion battery mark, and the specific power (when they release the energy) at about \(10^{6}\) W/kg is not too far away from non-cyclable energy storage media, like TNT. Very cool!

Strictly no dancing

Since the discovery of quantum mechanics more than a hundred years ago, it has been known that electrons in molecules can be coupled to the motion of the atoms that make up the molecules. Often referred to as molecular vibrations, the motion of atoms act like tiny springs, undergoing periodic motion. For electrons in these systems, being joined to the hip with these vibrations means they are constantly in motion too, dancing to the tune of the atoms, on timescales of a millionth of a billionth of a second.

But all this dancing around leads to a loss of energy and limits the performance of organic molecules in applications like organic light emitting diodes (OLEDs), infrared sensors and fluorescent biomarkers used in the study of cells and for tagging diseases such as cancer cells.

Now, researchers using laser-based spectroscopic techniques have discovered ‘new molecular design rules’ capable of halting this molecular dance. Their results, reported in Nature (“Decoupling excitons from high-frequency vibrations in organic molecules”), revealed crucial design principles that can stop the coupling of electrons to atomic vibrations, in effect shutting down their hectic dancing and propelling the molecules to achieve unparalleled performance.

AlphaFold 3 predicts the structure and interactions of all of life’s molecules

Inside every plant, animal and human cell are billions of molecular machines. They’re made up of proteins, DNA and other molecules, but no single piece works on its own. Only by seeing how they interact together, across millions of types of combinations, can we start to truly understand life’s processes.

In a paper published in Nature, we introduce AlphaFold 3, a revolutionary model that can predict the structure and interactions of all life’s molecules with unprecedented accuracy. For the interactions of proteins with other molecule types we see at least a 50% improvement compared with existing prediction methods, and for some important categories of interaction we have doubled prediction accuracy.

We hope AlphaFold 3 will help transform our understanding of the biological world and drug discovery. Scientists can access the majority of its capabilities, for free, through our newly launched AlphaFold Server, an easy-to-use research tool. To build on AlphaFold 3’s potential for drug design, Isomorphic Labs is already collaborating with pharmaceutical companies to apply it to real-world drug design challenges and, ultimately, develop new life-changing treatments for patients.

AlphaFold Server Demo — Google DeepMind

Google DeepMind’s newly launched AlphaFold Server is the most accurate tool in the world for predicting how proteins interact with other molecules throughout the cell. It is a free platform that scientists around the world can use for non-commercial research. With just a few clicks, biologists can harness the power of AlphaFold 3 to model structures composed of proteins, DNA, RNA and a selection of ligands, ions and chemical modifications.

AlphaFold Server will help scientists make novel hypotheses to test in the lab, speeding up workflows and enabling further innovation. Our platform gives researchers an accessible way to generate predictions, regardless of their access to computational resources or their expertise in machine learning.

Experimental protein-structure prediction can take about the length of a PhD and cost hundreds of thousands of dollars. Our previous model, AlphaFold 2, has been used to predict hundreds of millions of structures, which would have taken hundreds of millions of researcher-years at the current rate of experimental structural biology.

AlphaFold 3 model is a Google DeepMind and Isomorphic Labs collaboration.

Links and further reading:
Find out more about AlphaFold 3 at https://blog.google/technology/ai/goo
Read the full paper https://www.nature.com/articles/s4158
Access AlphaFold Server: alphafoldserver.com.

New AI Tools Predict How Life’s Building Blocks Assemble

Proteins are the molecular machines that sustain every cell and organism, and knowing what they look like will be critical to untangling how they function normally and malfunction in disease. Now researchers have taken a huge stride toward that goal with the development of new machine learning algorithms that can predict the folded shapes of not only proteins but other biomolecules with unprecedented accuracy.

In a paper published today in Nature, Google DeepMind and its spinoff company Isomorphic Labs announced the latest iteration of their AlphaFold program, AlphaFold3, which can predict the structures of proteins, DNA, RNA, ligands and other biomolecules, either alone or bound together in different embraces. The findings follow the tail of a similar update to another deep learning structure-prediction algorithm, called RoseTTAFold All-Atom, which was published in March in Science.

Researchers discover how Gut Muscle can be Vital for Growth, Repair and Treatments

The findings, published in a study in Developmental Cell, reveal that intestinal smooth muscle originates in embryos and forms by the same process that is a hallmark of creating scar tissue when a wound heals.

The smooth muscle sits inside tiny finger-like projections called villi, which absorb fats—also known as lipids—from foods. Contractions of these smooth muscles squeeze absorbed dietary fats through lymphatic capillaries, called lacteals, which send the fats into the systemic blood circulation to produce energy.

It’s Not Recommended to Rinse Your Teeth After Brushing. Here’s Why

If you’re still rinsing your teeth with water after brushing them, it may be time to stop. There are actually some benefits to leaving that extra bit of toothpaste on your teeth. I used to rinse after brushing my teeth — and even went back over them with a wet toothbrush — to remove any remnants of toothpaste left in my mouth. But then I found out from a dentist’s TikTok video that doing that isn’t the most effective method of keeping your chompers in good shape.

Instead, I now spit out as much toothpaste as I can without swishing with water, so I can allow the toothpaste to do its job just a little longer. However, I wasn’t sure why I was doing this — or what the benefits were — until I spoke with an expert.

I talked to Dr. Edmond Hewlett, consumer advisor for the American Dental Association and a professor at UCLA School of Dentistry, to find out why you shouldn’t rinse your mouth with water after brushing your teeth. Here’s the answer. For more tips, here’s why you should floss before brushing your teeth.