A global collaborative research group comprising 131 researchers from 105 laboratories across seven countries has published a paper in eLife. The study identifies brain energy metabolism dysfunction leading to altered pH and lactate levels as common hallmarks in numerous animal models of neuropsychiatric and neurodegenerative disorders, such as intellectual disability, autism spectrum disorders, schizophrenia, bipolar disorder, depressive disorders, and Alzheimer’s disease.
Category: biotech/medical – Page 512
PHILADELPHIA — Scientists at the University of Pennsylvania’s Perelman School of Medicine have developed a new method to create human artificial chromosomes (HACs) that could revolutionize gene therapy and other biotechnology applications. The study, published in Science, describes an approach that efficiently forms single-copy HACs, bypassing a common hurdle that has hindered progress in this field for decades.
Artificial chromosomes are lab-made structures designed to mimic the function of natural chromosomes, the packaged bundles of DNA found in the cells of humans and other organisms. These synthetic constructs have the potential to serve as vehicles for delivering therapeutic genes or as tools for studying chromosome biology. However, previous attempts to create HACs have been plagued by a major issue: the DNA segments used to build them often link together in unpredictable ways, forming long, tangled chains with rearranged sequences.
The Penn Medicine team, led by Dr. Ben Black, sought to overcome this challenge by completely overhauling the approach to HAC design and delivery. “The HAC we built is very attractive for eventual deployment in biotechnology applications, for instance, where large-scale genetic engineering of cells is desired,” Dr. Black explains in a media release. “A bonus is that they exist alongside natural chromosomes without having to alter the natural chromosomes in the cell.”
If it walks like a particle, and talks like a particle… it may still not be a particle. A topological soliton is a special type of wave or dislocation that behaves like a particle: it can move around but cannot spread out and disappear like you would expect from, say, a ripple on the surface of a pond. In a new study published in Nature, researchers from the University of Amsterdam demonstrate the atypical behavior of topological solitons in a robotic metamaterial, something which in the future may be used to control how robots move, sense their surroundings, and communicate.
Topological solitons can be found in many places and at many different length scales. For example, they take the form of kinks in coiled telephone cords and large molecules such as proteins. At a very different scale, a black hole can be understood as a topological soliton in the fabric of spacetime. Solitons play an important role in biological systems, being relevant for protein folding and morphogenesis – the development of cells or organs.
The unique features of topological solitons – that they can move around but always retain their shape and cannot suddenly disappear – are particularly interesting when combined with so-called non-reciprocal interactions. “In such an interaction, an agent A reacts to an agent B differently to the way agent B reacts to agent A,” explains Jonas Veenstra, a PhD student at the University of Amsterdam and first author of the new publication.
In a recent study published in eBioMedicine, researchers evaluated proteomic signatures in blood plasma and cervicovaginal fluid for endometrial cancer detection.
Study: Detection of endometrial cancer in cervico-vaginal fluid and blood plasma: leveraging proteomics and machine learning for biomarker discovery. Image Credit: mi_viri/Shutterstock.com.
A brain tumor is the growth of abnormal cells in the brain or the area near it including nerves, pituitary gland, pineal gland, and membranes that cover the surface of the brain. Sometimes it can happen in the brain tissue as well. Brain tumours can be cancerous (malignant) or it can be non-cancerous (benign). However, both of them can be potentially life-threatening.
On the other hand, movement disorders refer to a cluster of neurological conditions that can either cause increased movements or decreased movements. For the unversed, brain tumours that are specifically affecting the brainstem, can sometimes cause various movement disorders.
Ubiquitous Potential
While many gene-editing therapies are focused on fatal genetic diseases, epigenetic editing’s safety profile may enable the treatment of more common diseases. The fact that no underlying changes are made to the DNA sequence “offers some additional safety assurances for this approach compared to some others where the risk/benefit [ratio] needs to be maybe a little different before you would employ those technologies,” Kane told BioSpace.
Additionally, because most common diseases are not driven by genetic mutations, epigenetic editing may be a better fit. “Most of those diseases are driven from expression levels being at an unhealthy level,” Kane said. “That is something that a tool like epi[genetic] editing is uniquely well-suited to address.”
🧬🔬🎗
Research identifies vitamin D receptors (VDR) in breast cancer tumors as a promising prognostic marker, linking VDR presence to tumor characteristics, survival outcomes, and potentially informing treatment strategies.
Study uncovers proteomic signatures in blood plasma and cervicovaginal fluid that could lead to non-invasive detection methods for endometrial cancer, demonstrating significant potential for early diagnosis and improved patient outcomes.
The Journal of the National Cancer Institute (JNCI) reported new findings from the (GEMCAD)-1402 trial, which investigated the addition of aflibercept in the treatment of locally advanced rectal adenocarcinoma.