Toggle light / dark theme

Atoms transferred between optical tweezers via quantum tunneling in a first

Researchers at the University of Twente, Netherlands, have made an advancement in bioprinting technology that could transform how we create vascularized tissues. Their innovative bioink, recently featured in Advanced Healthcare Materials, introduces a way to precisely guide the growth and organization of tiny blood vessels within 3D-bioprinted tissues. The tiny blood vessels mimic the intricate networks found in the human body.

3D-printed organs have the potential to revolutionize medicine by providing solutions for organ failure, and tissue damage and developing new therapies. But a major challenge is ensuring these printed tissues receive enough nutrients and oxygen, which is critical for their survival and function. Without blood vessels, these tissues can’t efficiently obtain nutrients or remove waste, limiting their effectiveness. Therefore, the ability to 3D-bioprint blood vessels is a crucial advancement.

Tissue engineers could already position blood vessels during the bioprinting process, but these vessels often remodel unpredictably when cultured in the lab or implanted in the body, reducing the effectiveness of the engineered tissue. The programmable bioink developed by the University of Twente team addresses this issue by providing dynamic control over vessel growth and remodeling over time. This opens new possibilities for creating engineered tissues with long-term functionality and adaptability.

How to REVERSE AGING: The Latest Scientific Advances

Bill Faloon discusses advancements in age reversal therapies and their transition from research to clinical application, emphasizing the potential for delaying and reversing biological aging. He highlights advancements in age reversal, discussing therapies like young plasma, gene editing, yamanaka factors and exosome treatments, emphasizing their potential to reverse aging, improve health, and extend lifespan.

Credits to : Age Reversal Network https://age-reversal.net/

Please note that the links below are affiliate links, so we receive a small commission when you purchase a product through the links. Thank you for your support!
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
🔖Stem Cells Enhancers : STEMREGEN 15% OFF CODE: REVERSE : https://stemregen.co/reverse.

☑ProHealth, DoNotAge, Renue☑ All Products Discount Coupon CODE: REVERSE
🌏ProHealth Longevity 15% OFF All Products \& Upto 45% Subscription https://prohealth.pxf.io/REVERSEAGING
Calcium AKG 500mg Caps https://prohealth.pxf.io/CaAKG
Full Spectrum Apigenin https://prohealth.pxf.io/apigenin.
Longevity Collagen https://prohealth.pxf.io/LongevityCol
Berberine Pro 600 mg Caps https://prohealth.pxf.io/Berberine.
Astaxanthin 12mg https://prohealth.pxf.io/astaxanthin.

https://donotage.org/products?affilia
Ca-AKG https://tinyurl.com/2azxfx83
Pure Spermidine http://tinyurl.com/yc2xbp65 Pure Hyaluronic Acid http://tinyurl.com/3kt8jmxj.

🔶 Nuchido https://www.nuchido.com/REVERSEAGING FIRST ORDER 20% OFF code : REVERSEAGING20.

Linda Jiang — Head of Strategy and Government Partnerships, Healthcare, Lyft

The Quickest Route To Healthy


Linda Jiang is Head of Strategy and Government Partnerships, Healthcare, at Lyft (https://www.lyft.com/healthcare), where she’s responsible for accelerating the growth of the business, driving public sector strategy, and partnering with policymakers and regulators to bring access to the rideshare service to millions of people who need it for healthcare access.

Previously, Linda was an early growth operator at healthcare startups, leading strategy for Modern Fertility and consumer marketing for Color Genomics.

Linda began her career as a management consultant at PwC, with clients including academic medical centers, top integrated healthcare systems, medical device companies, and big box retailers, and also had a role in corporate strategy at Twitter.

She holds a Master of Public Health (MPH) and a Bachelor of Science, Neuroscience and Behavioral Biology from Emory University.

Red Light Therapy Reduces Blood Glucose: Glen Jeffery, PhD

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Pushing the limits of artificial enzymes

Researchers from CSIR-Central Leather Research Institute (CLRI), supported by INSPIRE Faculty and WISE Kiran Fellowships, explored the chemistry between proteins and nanozymes to advance artificial enzymes. Their work focuses on using manganese-based oxidase nanozyme (MnN) to crosslink collagen, a key structural protein, aiming to develop biomaterials for future medicinal and biomedical applications.

Read Full Story

Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry

A tiny, four-fingered “hand” folded from a single piece of DNA can pick up the virus that causes COVID-19 for highly sensitive rapid detection and can even block viral particles from entering cells to infect them, University of Illinois Urbana-Champaign researchers report. Dubbed the NanoGripper, the nanorobotic hand also could be programmed to interact with other viruses or to recognize cell surface markers for targeted drug delivery, such as for cancer treatment.

Led by Xing Wang, a professor of bioengineering and of chemistry at the U. of I., the researchers describe their advance in the journal Science Robotics.

Inspired by the gripping power of the human hand and bird claws, the researchers designed the NanoGripper with four bendable fingers and a palm, all in one nanostructure folded from a single piece of DNA. Each finger has three joints, like a human finger, and the angle and degree of bending are determined by the design on the DNA scaffold.

Nanostructures pave the way for advanced robotics—and mini dinosaurs

Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.

This innovative approach has potential across a range of applications, from targeted to responsive materials and energy-efficient optical signal processing. The method uses “DNA origami,” so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.

As a proof-of-concept, the researchers made more than 50 , including a “nano-dinosaur,” a “dancing robot” and a mini-Australia that is 150 nanometers wide, a thousand times narrower than a human hair.

Taming big data and particle beams: How researchers are pushing AI to the edge

Every day, researchers at the Department of Energy’s SLAC National Accelerator Laboratory tackle some of the biggest questions in science and technology—from laying the foundations for new drugs to developing new battery materials and solving big data challenges associated with particle physics and cosmology.

To get a hand with that work, they are increasingly turning to artificial intelligence. “AI will help accelerate our science and technology further,” said Ryan Coffee, a SLAC senior scientist. “I am really excited about that.”

Quantum Breakthrough Allows Researchers To Create “Previously Unimaginable Nanocrystals”

The type of semiconductive nanocrystals known as quantum dots is not only expanding the forefront of pure science but also playing a crucial role in practical applications, including lasers, quantum QLED televisions and displays, solar cells, medical devices, and other electronics.

A new technique for growing these microscopic crystals, recently published in Science, has not only found a new, more efficient way to build a useful type of quantum dot, but also opened up a whole group of novel chemical materials for future researchers’ exploration.

“I am excited to see how researchers across the globe can harness this technique to prepare previously unimaginable nanocrystals,” said first author Justin Ondry, a former postdoctoral researcher in UChicago’s Talapin Lab.

/* */