Toggle light / dark theme

SARS-CoV-2, the virus that causes COVID-19, can damage the heart even without directly infecting the heart tissue, a study has found. The research, published in the journal Circulation, specifically looked at damage to the hearts of people with SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), a serious lung condition that can be fatal. But researchers said the findings could have relevance to organs beyond the heart and also to viruses other than SARS-CoV-2.

Scientists have long known that COVID-19 increases the risk of heart attack, stroke, and Long COVID, and prior imaging research has shown that over 50% of people who get COVID-19 experience some inflammation or damage to the heart. What scientists did not know was whether the damage occurs because the virus infects the heart tissue itself, or because of systemic inflammation triggered by the body’s well-known immune response to the virus.

“This was a critical question and finding the answer opens up a whole new understanding of the link between this serious lung injury and the kind of inflammation that can lead to cardiovascular complications,” said Michelle Olive, Ph.D., associate director of the Basic and Early Translational Research Program at the National Heart, Lung, and Blood Institute (NHLBI), part of NIH. “The research also suggests that suppressing the inflammation through treatments might help minimize these complications.”

MONDAY, March 25, 2024 (HealthDay News) — Intrathecal gene transfer with scAAV9/JeT-GAN may result in some benefit for children with giant axonal neuropathy, according to a study published in the March 21 issue of the New England Journal of Medicine.

Diana X. Bharucha-Goebel, M.D., from the National Institutes of Health in Bethesda, Maryland, and colleagues conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN in children with giant axonal neuropathy. Fourteen participants received one of four intrathecal doses of scAAV9/JeT-GAN: 3.5 × 1013 total vector genomes (vg); 1.2 × 1014 vg; 1.8 × 1014 vg; and 3.5 × 1014 vg (in two, four, five, and three participants, respectively).

The researchers found that during a median observation period of 68.7 months, one of the 48 serious adverse events was possibly related to treatment and 129 of 682 adverse events were possibly related to treatment. In the total cohort, the mean pretreatment slope was −7.17 percentage points per year. One year posttreatment, posterior mean changes in slope were −0.54, 3.23, 5.32, and 3.43 percentage points with the 3.5 × 1013 vg, 1.2 × 1014 vg, 1.8 × 1014 vg, and 3.5 × 1014 vg doses, respectively. For slowing the slope, the corresponding posterior probabilities were 44, 92, 99 (above the efficacy threshold), and 90 percent, respectively. Sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in six participants between six and 24 months after gene transfer, but remained absent in eight participants.

Liz Parrish, CEO of BioViva Science, is the world’s most genetically modified person. She took a telomere-restoring gene therapy in 2015 alongside follistatin, making her the first person to take gene therapy to treat biological aging.

But why telomeres?

While there are other ways to measure and address the aging process, lengthening telomeres is an especially promising avenue.