Toggle light / dark theme

Children with genetic deafness have hearing restored with gene therapy: Study

Children with hereditary deafness regained their hearing thanks to a type of gene therapy, a new study published on Wednesday found.

In a clinical trial, co-led by investigators from Mass Eye and Ear, a specialty hospital in Boston, six children who had a form of genetic deafness called DFNB9 were examined.

This deafness is caused by mutations of the OTOF gene. This mutation fails to produce a protein known as otoferlin, which is necessary for the transmission of sound signals from the ear to the brain, according to the researchers.

Scientists reveal dopamine and serotonin’s opposing roles in fascinating neuroscience breakthrough

A recent study from Stanford’s Wu Tsai Neurosciences Institute has shed light on the interplay between two key brain chemicals, dopamine and serotonin, revealing their opposing roles in shaping our decisions and learning processes. Published in Nature, the research demonstrates for the first time that dopamine and serotonin operate as a “gas and brake” system, jointly influencing how we learn from rewards. The findings have broad implications, from understanding everyday decision-making to developing treatments for neurological and psychiatric conditions such as addiction, depression, and Parkinson’s disease.

Dopamine and serotonin are crucial to many aspects of human behavior, including reward processing and decision-making. Both neurotransmitters are also implicated in a variety of mental health disorders. While previous research has established their individual roles—dopamine is linked to reward prediction and seeking, while serotonin promotes long-term thinking and patience—the precise nature of their interaction has remained unclear.

Two competing theories have sought to explain their dynamic: the “synergy hypothesis,” which posits that dopamine focuses on immediate rewards and serotonin on long-term benefits, and the “opponency hypothesis,” suggesting the two act in opposition, with dopamine encouraging impulsive action and serotonin promoting restraint. The Stanford researchers aimed to directly test these theories using advanced experimental methods.

Unlocking the Brain: Peptide-Guided Nanoparticles Deliver mRNA to Neurons

Penn Engineers have modified lipid nanoparticles (LNPs) — the revolutionary technology behind the COVID-19 mRNA vaccines — to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how peptides — short strings of amino acids — can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the endothelial cells that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Longevity Biohacker Kenneth Scott is 82: Rejuvenation Approach

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Groundbreaking 21-Million Cell Study Revises Our Understanding of Aging

Aging happens in distinct stages marked by synchronized cellular changes across organs, as shown in Rockefeller’s largest-ever mammalian aging atlas. Their findings offer clues for targeting aging processes and reveal key age and sex differences in cellular dynamics.

If you compared photos of a maple tree taken in July and December, the difference would be striking: a vibrant green canopy in summer versus bare, stark branches in winter. What those images wouldn’t reveal is how the transformation unfolded—whether it was gradual or sudden. In reality, deciduous trees usually wait for environmental cues, such as changes in light or temperature, before shedding all their leaves within a brief span of one to two weeks.

When it comes to aging, we may be more like these trees than we realized.

The Protective Role of Vitamin K in Aging and Age-Related Diseases

Aging is an inevitable aspect of life, but age-related diseases are not an inseparable part of the aging process, and their risk can be reduced through a healthy lifestyle. Vitamin K has a broader impact than just blood clotting, and yet it remains overshadowed by other vitamins and underestimated by both doctors and consumers. Vitamin K (VK) is a multifunctional micronutrient with anti-inflammatory and antioxidant properties, whose deficiency may cause age-related diseases such as cardiovascular diseases, neurodegenerative diseases and osteoporosis. There is a growing body of evidence supporting the role of vitamin K as a protective nutrient in aging and inflammation. This review summarizes the current knowledge regarding the molecular aspects of the protective role of vitamin K in aging and age-related diseases and its clinical implications.

/* */