Toggle light / dark theme

Bulletproof Coffee, The New Power Drink Of Silicon Valley

By — Fast Company

Cloud computing pioneer Dave Asprey took a trip to Tibet in 2004 to learn how to meditate. But it was the yak-butter tea he tried there that ended up transforming his life.

“I had so much more energy and I didn’t feel sick at the altitude at all. I realized: There’s something going on here. I just felt so good, I’d never go back to a coffee maker with grinder combination” he remembers. He returned home and spent several years fiddling with ingredients, aiming for “a hot version of a Frappuccino without the milk and sugar.” He started with a base of coffee instead of tea because he’s an aficionado; he says he got his only undergraduate “A” the semester he discovered espresso. And the ban on milk and sugar was one of the many biohacks he had practiced over 15 years (and $300,000 in doctors and 3-D radioactive scans of his brain metabolism) trying to rid himself of “brain fog” and 100 pounds of extra weight.

Read more

Founders Fund Backs a Robotic Lab that Puts Science in the Cloud

By James Temple — Re/Co[de

Emerald Therapeutics is developing potential treatments for viral infections like HIV and HPV. But they’re not ready to talk about that yet.

What the stealth startup is ready to discuss is a tool they built in an effort to accelerate that work: A completely robotic lab that the company believes could aid other researchers as well, effectively serving as a kind of Amazon Web Services for science.

The nearly 20-person company has packed a 5,000-square-foot facility in a little office park in Silicon Valley with more than $2 million worth of mass spectrometers, automated pipettes and microscopes, capable of carrying out remote life sciences experiments under controlled conditions.

Read more

Massive Military-Funded Project Aims to Re-align Ailing Brains

— Singularity Hub

Deep brain stimulation as a treatment for epilepsy and movement disorders, most notably Parkinson’s disease, has rapidly gone from experimental to standard practice. With devices to provide delicate electro-stimulation to the brain now available and with maps of which neurons do what steadily gaining detail, attention is now shifting to using the approach to treat mental illness.

Read More

Mice With MS-Like Condition Walk Again After Human Stem Cell Treatment

University of Utah

Mice severely disabled by a condition similar to multiple sclerosis (MS) could walk less than two weeks following treatment with human stem cells. The finding, which uncovers new avenues for treating MS, will be published online on May 15, 2014, in the journal Stem Cell Reports.

When scientists transplanted human stem cells into MS mice, they expected no benefit from the treatment. They thought the cells would be rejected, much like rejection of an organ transplant.

Instead, the experiment yielded spectacular results.

Read More

Researchers use light to coax stem cells to regenerate teeth

Kristen Kusek — Wyss Institute

A Harvard-led team is the first to demonstrate the ability to use low-power light to trigger stem cells inside the body to regenerate tissue, an advance they reported in Science Translational Medicine. The research, led by David J. Mooney, Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS), lays the foundation for a host of clinical applications in restorative dentistry and regenerative medicine more broadly, such as wound healing, bone regeneration, and more.

The team used a low-power laser to trigger human dental stem cells to form dentin, the hard tissue that is similar to bone and makes up the bulk of teeth. What’s more, they outlined the precise molecular mechanism involved, and demonstrated its prowess using multiple laboratory and animal models.

Read more

Mind uploading won’t lead to immortality

Uploading the content of one’s mind, including one’s personality, memories and emotions, into a computer may one day be possible, but it won’t transfer our biological consciousness and won’t make us immortal.

Uploading one’s mind into a computer, a concept popularized by the 2014 movie Transcendence starring Johnny Depp, is likely to become at least partially possible, but won’t lead to immortality. Major objections have been raised regarding the feasibility of mind uploading. Even if we could surpass every technical obstacle and successfully copy the totality of one’s mind, emotions, memories, personality and intellect into a machine, that would be just that: a copy, which itself can be copied again and again on various computers.

THE DILEMMA OF SPLIT CONSCIOUSNESS

Neuroscientists have not yet been able to explain what consciousness is, or how it works at a neurological level. Once they do, it is might be possible to reproduce consciousness in artificial intelligence. If that proves feasible, then it should in theory be possible to replicate our consciousness on computers too. Or is that jumpig to conclusions ?

Once all the connections in the brain are mapped and we are able to reproduce all neural connections electronically, we will also be able run a faithful simulation of our brain on a computer. However, even if that simulation happens to have a consciousness of its own, it will never be quite like our own biological consciousness. For example, without hormones we couldn’t feel emotions like love, jealously or attachment. (see Could a machine or an AI ever feel human-like emotions ?)

Some people think that mind uploading necessarily requires to leave one’s biological body. But there is no conscensus about that. Uploading means copying. When a file is uploaded on the Internet, it doesn’t get deleted at the source. It’s just a copy.

The best analogy to understand that is cloning. Identical twins are an example of human clones that already live among us. Identical twins share the same DNA, yet nobody would argue that they also share a single consciousness.

It will be easy to prove that hypothesis once the technology becomes available. Unlike Johnny Depp in Transcend, we don’t have to die to upload our mind to one or several computers. Doing so won’t deprive us of our biological consciousness. It will just be like having a mental clone of ourself, but we will never feel like we are inside the computer, without affecting who we are.

If the conscious self doesn’t leave the biologically body (i.e. “die”) when transferring mind and consciousness, it would basically mean that that individual would feel in two places at the same time: in the biological body and in the computer. That is problematic. It’s hard to conceive how that could be possible since the very essence of consciousness is a feeling of indivisible unity.

If we want to avoid this problem of dividing the sense of self, we must indeed find a way to transfer the consciousness from the body to the computer. But this would assume that consciousness is merely some data that can be transferred. We don’t know that yet. It could be tied to our neurons or to very specific atoms in some neurons. If that was the case, destroying the neurons would destroy the consciousness.

Even assuming that we found a way to transfer the consciousness from the brain to a computer, how could we avoid consciousness being copied to other computers, recreating the philosophical problem of splitting the self. That would actually be much worse since a computerized consciousness could be copied endless times. How would you then feel a sense of unified consciousness ?

Since mind uploading won’t preserve our self-awareness, the feeling that we are ourself and not someone else, it won’t lead to immortality. We’ll still be bound to our bodies, but life expectancy for transhumanists and cybernetic humans will be considerably extended.

IMMORTALITY ISN’T THE SAME AS EXTENDED LONGEVITY

Immortality is a confusing term since it implies living forever, which is impossible since nothing is eternal in our universe, not even atoms or quarks. Living for billions of years, while highly improbable in itself, wouldn’t even be close to immortality. It may seem like a very large number compared to our short existence, but compared to eternity (infinite time), it isn’t much longer than 100 years.

Even machines aren’t much longer lived than we are. Actually modern computers tend to have much shorter life spans than humans. A 10-year old computer is very old indeed, as well as slower and more prone to technical problems than a new computer. So why would we think that transferring our mind to a computer would grant us greatly extended longevity ?

Even if we could transfer all our mind’s data and consciousness an unlimited number of times onto new machines, that won’t prevent the machine currently hosting us from being destroyed by viruses, bugs, mechanical failures or outright physical destruction of the whole hardware, intentionally, accidentally or due to natural catastrophes.

In the meantime, science will slow down, stop and even reverse the aging process, enabling us to live healthily for a very long time by today’s standards. This is known as negligible senescence. Nevertheless, cybernetic humans with robotic limbs and respirocytes will still die in accidents or wars. At best we could hope to living for several hundreds or thousands years, assuming that nothing kills us before.

As a result, there won’t be that much differences between living inside a biological body and a machine. The risks will be comparable. Human longevity will in all likelihood increase dramatically, but there simply is no such thing as immortality.

CONCLUSION

Artificial Intelligence could easily replicate most of processes, thoughts, emotions, sensations and memories of the human brain — with some reservations on some feelings and emotions residing outside the brain, in the biological body. An AI might also have a consciousness of its own. Backing up the content of one’s mind will most probably be possible one day. However there is no evidence that consciousness or self-awareness are merely information that can be transferred since consciousness cannot be divided in two or many parts.

Consciousness is most likely tied to neurons in a certain part of the brain (which may well include the thalamus). These neurons are maintained throughout life, from birth to death, without being regenerated like other cells in the body, which explains the experienced feeling of continuity.

There is not the slightest scientific evidence of a duality between body and consciousness, or in other words that consciousness could be equated with an immaterial soul. In the absence of such duality, a person’s original consciousness would cease to exist with the destruction of the neurons in his/her brain responsible for consciousness. Unless one believes in an immaterial, immortal soul, the death of one’s brain automatically results in the extinction of consciousness. While a new consciousness could be imitated to perfection inside a machine, it would merely be a clone of the person’s consciousness, not an actual transfer, meaning that that feeling of self would not be preserved.

———

This article was originally published on Life 2.0.

VIRUS: Rebutting the fear of synthetic biology @HJBentham @IEET

- @ClubOfINFO — A recent massive leap forward in synthetic life, recently published in Nature, is the expansion of the alphabet of DNA to six letters rather than four, by synthetic biologists – the technicians to whom we entrust the great task of reprogramming life itself.

Breakthroughs such as the above are quite certain to alert more and more people to synthetic biology and its possible consequences. For as long as such breathtaking discoveries continue to be made in this area of research, it is inevitable that latent fears among society will come closer to the surface.
There is likely to be a profound distrust, whether inculcated by religion or by science fiction horror movies and literature, towards the concept of tampering with nature and especially the very building blocks that brought us into existence. While the people with this profoundly negative reaction are not sure what they are warning against, they are motivated by a vitalistic need to believe that the perversion of life is going to provoke hidden – almost divine – repercussions.
Is it really true that no-one should be meddling with something so fundamental to life, or is synthetic biology the science of our century, our civilization’s key to unlimited energy? Whatever the answer may be, the science enabling it already exists and is growing rapidly, and history seems to show that any technology once invented is impossible to contain.
The fact that synthetic base pairs now exist should confirm, for many, the beginning of humanity’s re-engineering of the structures of life itself. As it is unprecedented in our evolution, we are presented with an ethical question and all points of view should be considered, no matter how radical or conservative they are.
It is hard to find a strong display of enthusiasm for the use of synthetic biology as a solution to the world’s greatest problems, even among the transhumanists and techno-progressives. Most of the popular enthusiasm for technological change, particularly the radical improvement of life and the environment through technology, focuses on artificial intelligence, nanotechnology, and things like solar cells as the solution to energy crises. There is not much of a popular case being made for synthetic biology as one of the keys to civilization’s salvation and humanity’s long-term survival, but there should be. The first obstacles to such a case are most likely fear and prejudice.
Even among those theorists who offer the most compelling arguments about self-sustaining technologies and their potential to democratize and change the means of production, enthusiasm for synthetic biology is purposely withheld. Yannick Rumpala’s paper Additive manufacturing as global remanufacturing of politics has a title that speaks for itself. It sees in 3d printing the potential to exorcize some of the most oppressive structural inevitabilities of the current division of labor, transforming economics and politics to be more network-based and egalitarian. When I suggested to Yannick that synthetic organisms – the most obvious choices of technology that will be able to self-replicate and become universally available at every stratum of global society – he was reserved. This was half due to not having reflected on biotechnology’s democratic possibilities, and half due to a principled rejection of “artificial environments”.
Should synthetic biology make people nervous rather than excited, and should be it be rejected as controversial and potentially dangerous rather than embraced as a potentially world-changing and highly democratic technology? The second tendency that results in a rejection of synthetic biology by those who normally go about endorsing technology as the catalyst for social change is the tendency to point to a very specific threat – a humanity-threatening virus.
This second rejection of synthetic biology is easier to respond to than the first, because it is very specific. In fact, the threat is discussed in sufficient depth by synthetic biology’s own leading scientist himself, J. Craig Venter, in his 2013 book Life at the Speed of Light. In anticipation of a viral threat, “bio-terror” is considered the top danger by the US government, but “bio-error” is seen by Venter as an even bigger danger. There is a possibility of individual accidents using synthetic biology, analogous to medical accidents from overdoses. It could involve a virus introduced as a treatment for cancer becoming dangerous (like in the movie, I Am Legend). This is especially possible, if the technology becomes ubiquitous and “DIY”, with individuals customizing their own treatments by synthesizing viruses. However, many household materials and technologies already present the same level of threat to lone individuals, so there is no reason to focus on the popular use of synthetic biology as an extraordinary threat.
A larger scale disaster is far easier to prevent than the death or illness of a lone individual from his own synthetic biology accident. A bio-terror attack, Venter writes, would be extremely difficult using synthetic biology. Synthetic biology is going to give medical professionals the ability to quickly sequence genomes and transmit them on the airwaves to synthesize new vaccines. This would only make it easier to fight against bioterror or a potentially apocalyptic virus, as the threat could be found and sequenced by computers, with the cure being synthesized and introduced almost immediately. Despite this fact that synthetic biology provides the best defense against its own possible threats, it is still important to be balanced in our recognition of the benefits and threats of this technology.
More dangerous than a virus breaking loose from the lab, Venter recognizes the potential for the abuse of synthetic biology by hostile governments. Of most concern, custom viruses could be used as assassins against individuals, whether by governments or conspirators. A cold could be created to have no effect on most people, but be deadly to the President of the United States. All you would need to do is get access to a sample of the President’s genetic material, sequence it, and develop a corresponding virus that exploits a unique weakness in his/her DNA. This danger in particular seems to be more worthy of concern than an apocalyptic virus or devastating bioterrorist attack striking the whole of humanity.
The ethical burden on those who work with synthetic life, as Venter takes from a US government bioethics study, requires “a balance between the pessimistic view of these efforts as yet another example of hubris and the optimistic view of their being tantamount to “human progress” ”. Synthetic biologists must be “good stewards”, and must “move genomic research forward with caution, armed with insights from value traditions with respect to the proper purposes and uses of knowledge.”
However, there is also an undeniable reason to embrace synthetic biology as a solution to many of the world’s most urgent problems. J. Craig Venter’s own words confirm that synthetic life deserves to be included in Yannick Rumpala’s analysis, as a democratic technology that can transform global politics and economics and counter disparity in the world:

“Creating life at the speed of light is part of a new industrial revolution that will see manufacturing shift away from the centralized factories of the past to a distributed, domestic manufacturing future, thanks to 3-d printers.”

There may be a terrible threat from synthetic biology, but it will not necessarily be bio-error or bio-terror. The abuse could come from none other than a very familiar leviathan that has already violated the trust of its citizens before: the supposedly incorruptible United States government. Already, there is an interest in sequencing everyone’s genomes and placing them on a massive database, ostensibly for medical purposes. One cannot help but connect this with the US government’s fascination with tracking and monitoring its own citizens. If the ability to customize a virus to target an individual is true, the killer state will almost certainly maintain the military option of synthetic biology on the table – a possible way of carrying out “targeted killings” around the world in a more sophisticated and secretive manner than ever before.
The threats of synthetic biology are elusive and verge on being conspiracy theories or overused movie plots, but the magnificent potential of synthetic biology to eliminate inequality and suffering in the world is clear and present. In fact, the greatest bio-disaster in the history of the world may be humanity’s reluctance to remanufacture life in order to make more efficient use of the world’s declining natural resources. At the same time, the belief that ubiquitous synthetic biology will threaten life is secondary and distracting, as the true responsibility for unjustly threatening life is likely to always be with the state.

By Harry J. BenthamMore articles by Harry J. Bentham

Originally published on 13 May 2014 at the Institute for Ethics and Emerging Technologies (IEET)

Today’s emerging technologies will be tomorrow’s liberators. Subscribe for similar articles.

Scientists Reconnect Severed Nerves With Liquid Metal

Get your T-1000 jokes ready, because we’re one step closer to liquid metal-powered people. As a team of Chinese biomedical engineers recently used an alloy to close the gap between severed sciatic nerves in frogs. In effect, it made electronic circuits out of nerves — and it worked.

Shockingly, this sci-fi solution is as simple as it sounds. Looking for a way to keep muscles active while nerves healed, the Tsinghua University researchers identified liquid metal as a highly conductive but also safe material to bridge the gap. They decided on the liquid metal alloy gallium-indium-selenium, a benign material that’s liquid at body temperature. (This liquid metal is not to be confused with the brand-name wonder material Liquidmetal, which is not actually a liquid.) The liquid metal alloy is also highly conductive.

Read more

/* */