Toggle light / dark theme

“As complex living systems, we likely have trillions upon trillions of tiny nanoscopic holes in our cells that facilitate and regulate the crucial processes that keep us alive and make up who are,” says Marija Drndić, a physicist at the University of Pennsylvania who develops synthetic versions of the biological pores that “guide the exchange of ions and molecules throughout the body.”

The ability to control and monitor the flow of molecules through these pores has opened new avenues for research in the last two decades, according to Drndić, and the field of synthetic nanopores, where materials like graphene and silicon are drilled with tiny holes, has already led to significant advances in DNA sequencing.

In a paper published in Nature Nanotechnology (“Coupled nanopores for single-molecule detection”), Drndić and Dimitri Monos, her longtime collaborator at the Perelman School of Medicine and Children’s Hospital of Philadelphia (CHOP), presented a new kind of nanopore technology with the development of a dual-layer nanopore system: a design that consists of two or more nanopores, stacked just nanometers apart, which allows for more precise detection and control of molecules like DNA as they pass through.

In this sense, the cemi theory incorporates Chalmers’ (Chalmers 1995) ‘double-aspect’ principle that information has both a physical, and a phenomenal or experiential aspect. At the particulate level, a molecule of the neurotransmitter glutamate encodes bond energies, angles, etc. but nothing extrinsic to itself. Awareness makes no sense for this kind matter-encoded information: what can glutamate be aware of except itself? Conversely, at the wave level, information encoded in physical fields is physically unified and can encode extrinsic information, as utilized in TV and radio signals. This EM field-based information will, according to the double-aspect principle, be a suitable substrate for experience. As proposed in my earlier paper (McFadden 2002a) ‘awareness will be a property of any system in which information is integrated into an information field that is complex enough to encode representations of real objects in the outside world (such as a face)’. Nevertheless, awareness is meaningless unless it can communicate so only fields that have access to a motor system, such as the cemi field, are candidates for any scientific notion of consciousness.

I previously proposed (McFadden 2013b), that complex information acquires its meaning, in the sense of binding of all of the varied aspects of a mental object, in the brain’s EM field. Here, I extend this idea to propose that meaning is an algorithm experienced, in its entirety from problem to its solution, as a single percept in the global workspace of brain’s EM field. This is where distributed information encoded in millions of physically separated neurons comes together. It is where Shakespeare’s words are turned into his poetry. It is also, where problems and solutions, such as how to untangle a rope from the wheels of a bicycle, are grasped in their entirety.

There are of course many unanswered questions, such as degree and extent of synchrony required to encode conscious thoughts, the influence of drugs or anaesthetics on the cemi field or whether cemi fields are causally active in animal brains. Yet the cemi theory provides a new paradigm in which consciousness is rooted in an entirely physical, measurable and artificially malleable physical structure and is amenable to experimental testing. The cemi field theory thereby delivers a kind of dualism, but it is a scientific dualism built on the distinction between matter and energy, rather than matter and spirit. Consciousness is what algorithms that exist simultaneously in the space of the brain’s EM field, feel like.

Life insurers and those offering income protection and permanent disability insurance will be banned from using genetic testing to refuse cover, or hike up charges, for a range of insurance products.

The federal government announced on Tuesday it would ban the practice that saw consumers discriminated against if they disclosed the results of genetic tests that predict their likelihood of an inherited disease.

It comes after consultation to address genetic discrimination in life insurance earlier this year. More than 1,000 submissions were received with 97 per cent supporting a total ban.

UC San Diego researchers have identified a new inflammatory mechanism in the heart’s borderzone after a heart attack, driven by stressed cardiomyocytes. This discovery may lead to novel therapies aimed at preventing heart failure by targeting mechanical stress, DNA sensing, and IFN signaling.

Ischemic heart disease is the leading cause of death globally. It typically starts with a heart attack, or myocardial infarction (MI), during which part of the heart muscle dies because it doesn’t receive enough blood from the coronary arteries. This event triggers intense inflammation, changes to the structure of the heart wall, and eventually can lead to heart failure.

Anti-inflammatory drugs have been surprisingly ineffective at preventing heart failure. As a consequence, they are not a routine part of post-MI care. However, it is possible that the most potent molecular and cellular inflammation targets have yet to be discovered.

It was a career-defining (and perhaps life changing) moment when Dr. Vittorio Sebastiano, a reproductive biologist by training, realized that because we are able to create life, that same body of information could be harnessed to create youth — that is, radically reverse our biological aging process to a younger time point without losing cellular identity.

In 2014, he and his lab began unpacking this epiphany. They made the radical decision to conduct their investigations in human cells and tissue rather than in rodents, with the expectation that such a start would be a better bridge to human clinical trials.

Flash forward a decade and Dr. Sebastiano and his team stand poised to begin trials in humans. Dr. Sebastiano is, in my opinion, one of the most extraordinary scientists in the longevity space today who flies under the radar of most of us in functional medicine.

In this podcast — which is actually two-in-one because I continued the conversation with him on a second date — you’ll hear about the remarkable work they’re undertaking at his lab. For example: They’ve created a biological clock that encompasses the whole genome consisting of millions and millions of CpG sites. They are able to clearly demonstrate the reversal of bioage using their methodology — a cocktail of Yamanaka factors plus, with clear time limits — which changes the epigenome first, and in so doing influences all of the hallmarks of aging. Teaser: they’ve identified one intervention routinely used in clinical practice that influences their bio age clock in the same way that their cocktail does. What is it? I was riveted with this conversation, as I am sure you’ll be. Leave a review if you like it, and — Yes — let me know what you think. I know this will prompt deep questions for you, as it did for me. ~DrKF

Check out the show notes at www.drkarafitzgerald.com/fxmed-podcast/ for all the relevant links and resources.