Toggle light / dark theme

New method maps hundreds of proteins in cell nuclei simultaneously

Caltech researchers have developed a new method to map the positions of hundreds of DNA-associated proteins within cell nuclei all at the same time. The method, called ChIP–DIP (Chromatin ImmunoPrecipitation Done In Parallel), is a versatile tool for understanding the inner workings of the nucleus during different contexts, such as disease or development.

The research was conducted in the laboratory of Mitchell Guttman, professor of biology, and is described in a paper that appears in the journal Nature Genetics.

Nearly all cells in the human body contain the same DNA, which encodes the blueprint for creating every cell type in the body and directing their activities. Despite having the same , different cell types express unique sets of proteins, allowing for the various cells to perform their specialized functions and to adapt to conditions within their environments. This is possible because of careful regulation within the nucleus of each cell and involves thousands of regulatory proteins that localize to precise places in the nucleus.

Lasers Unlock the Next Frontier in Particle Acceleration

Using dual lasers and an advanced gas injection system, researchers at the Berkeley Lab Laser Accelerator Center (BELLA) accelerated a high-quality electron beam to 10 billion electronvolts (10 GeV) over a distance of just 30 centimeters.

Laser-plasma accelerators have the potential to dramatically shrink the size and cost of particle accelerators, benefiting fields such as high-energy physics, medicine, and materials science. Key achievements from BELLA’s recent experiment include:

Proof-of-concept study bioengineers therapeutics for improved cancer treatment

A team of Children’s Medical Research Institute (CMRI) scientists has identified a new method for producing a therapeutic product that has the potential to improve the treatment of cancer.

The work by Associate Professor Leszek Lisowski and his Translational Vectorology Research Unit is published in the journal Molecular Therapy.

Chimeric antigen receptor (CAR) T cells, also known as CAR T therapies, are a relatively new form of treatment showing very exciting results for several types of cancer. While initially validated for the treatment of B cell malignancies, especially (ALL), the technology has also shown promise for other cancer types, including solid tumors.

ORNL researchers translate foundational uranium science into active nonproliferation solutions

Through its commitment to international nuclear nonproliferation — a mission focused on limiting the spread of nuclear weapons and sensitive technology while working to promote peaceful use of nuclear science and technology — the United States maintains a constant vigilance aimed at reducing the threat of nuclear and radiological terrorism worldwide.

With extensive research into both basic and applied uranium science, as well as internationally deployed operational solutions, the Department of Energy’s Oak Ridge National Laboratory is uniquely positioned to contribute its comprehensive capabilities toward advancing the U.S. nonproliferation mission.

In 1943, seemingly overnight, ORNL emerged from a rural Tennessee valley as the site of the world’s first continuously operating nuclear reactor, in support of U.S. efforts to end World War II. ORNL’s mission soon shifted into peacetime applications, harnessing nuclear science for medical treatments, power generation and breakthroughs in materials, biological and computational sciences.

Scientists Crack Cancer’s Hidden Defense With a Breakthrough Protein Discovery

Scientists have discovered a key protein that helps cancer cells avoid detection by the immune system during a type of advanced therapy.

By creating a new drug that blocks this protein, researchers hope to make cancer treatments more effective, especially for hard-to-treat blood cancers. This breakthrough could lead to better survival rates and fewer relapses for patients.

Scientists at City of Hope, one of the leading cancer research and treatment centers in the U.S., have uncovered a key factor that allows cancer cells to evade CAR T cell therapy.

Giant virus encodes key piece of protein-making machinery of cellular life

Researchers at the University of Hawai’i at Mānoa have discovered that a virus, FloV-SA2, encodes one of the proteins needed to make ribosomes, the central engines in all cells that translate genetic information into proteins, the building blocks of life. This is the first eukaryotic virus (a virus that infects eukaryotes, such as plants, animals, fungi) found to encode such a protein.

The research is published in the journal npj Viruses.

Viruses are packets of genetic material surrounded by a protein coating. They replicate by getting inside of a cell where they take over the cell’s replication machinery and direct it to make more viruses. Simple viruses depend almost exclusively on material and machinery provided by the , but larger, more complex viruses code for numerous proteins to aid in their own replication.

AI Approach Builds Genomenon’s Database of Clinically Relevant Genomic Data

As the amount of genomic data grows, so too does the challenge of organizing it into a usable database. Indeed, the lack of a searchable database of genomic information from the literature has posed a challenge to the research community. Now, Genomenon’s AI-based approach—the Genomenon Genomic Graph (G3) knowledgebase—combines patient and biological data from nearly all published scientific and medical studies, including demographics, clinical characteristics, phenotypes, treatments, outcomes, and disease-associated genes and variants.

Training of the underlying large language model for G3 uses Genomenon’s proprietary, curated genomic datasets. The knowledgebase will power AI-driven predictive models for clinical diagnostics and drug development applications.

The Ann Arbor, MI, based Genomenon—a provider of genomic intelligence solutions—notes that this advancement represents the first time that content from the entire corpus of clinically relevant literature will be captured in a single, searchable knowledgebase.