Toggle light / dark theme

Scientists have discovered that CAR T cells, traditionally used in cancer treatment, can be engineered to fight aging by eliminating senescent cells, offering a promising single-dose, lifelong treatment against aging-related diseases.

The fountain of youth has eluded explorers for ages. It turns out the magic anti-aging elixir might have been inside us all along.

Cold Spring Harbor Laboratory (CSHL) Assistant Professor Corina Amor Vegas and colleagues have discovered that T cells can be reprogrammed to fight aging, so to speak. Given the right set of genetic modifications, these white blood cells can attack another group of cells known as senescent cells. These cells are thought to be responsible for many of the diseases we grapple with later in life.

IceCure Medical, an Israeli company that developed a way to freeze and destroy tumors (cryoablation) as alternative to surgery, says an interim analysis of its current kidney cancer trial shows the platform is a safe and effective treatment for malignant renal tumors, with 89.5 percent recurrence-free rate.

The data from the analysis for the trial of the ProSense platform was presented at the Annual Israeli Conference on Interventional Radiology in Tel Aviv on June 10.

Cryoablation is not a new process, but IceCure’s system allows physicians to perform the procedure at their own office, with no need for hospitalization. It also uses liquid nitrogen instead of a mixture of argon and helium gasses, which is cheaper, can be frozen faster, and is easier to maintain at sub-zero temperatures, shortening the treatment time.

Scientists from the Berlin Institute of Health at Charité (BIH) and Open Targets together with colleagues from the University of Cambridge, and Addenbrooke’s Hospital in Cambridge, U.K., uncovered mechanisms driving regeneration of the liver during chronic liver disease. This regenerative process allows the liver to repair itself when chronically injured but could also result in progression toward cancer.

The researchers were able to demonstrate this first by performing single-cell analyses on many biopsies obtained from patients with progressive metabolic dysfunction-associated steatotic liver disease (MASLD).

The results obtained in vivo were validated using cultured organoids in the laboratory. The scientists have now published their results in the journal Nature.

Centenarians, once considered rare, have become commonplace. Indeed, they are the fastest-growing demographic group of the world’s population, with numbers roughly doubling every ten years since the 1970s.

How long humans can live, and what determines a long and healthy life, have been of interest for as long as we know. Plato and Aristotle discussed and wrote about the ageing process over 2,300 years ago.

The pursuit of understanding the secrets behind exceptional longevity isn’t easy, however. It involves unravelling the complex interplay of genetic predisposition and lifestyle factors and how they interact throughout a person’s life.

Researchers from Tohoku University and Kyoto University have successfully developed a DNA-based molecular controller that autonomously directs the assembly and disassembly of molecular robots. This pioneering technology marks a significant step towards advanced autonomous molecular systems with potential applications in medicine and nanotechnology.

Details of the breakthrough were published in the journal Science Advances (“Autonomous assembly and disassembly of gliding molecular robots regulated by a DNA-based molecular controller”).

“Our newly developed molecular controller, composed of artificially designed DNA molecules and enzymes, coexists with molecular robots and controls them by outputting specific DNA molecules,” points out Shin-ichiro M. Nomura, an associate professor at Tohoku University’s Graduate School of Engineering and co-author of the study. “This allows the molecular robots to self-assemble and disassemble automatically, without the need for external manipulation.”

This review spotlights the revolutionary role of deep learning (DL) in expanding the understanding of RNA is a fundamental biomolecule that shapes and regulates diverse phenotypes including human diseases. Understanding the principles governing the functions of RNA is a key objective of current biology. Recently, big data produced via high-throughput experiments have been utilized to develop DL models aimed at analyzing and predicting RNA-related biological processes. This review emphasizes the role of public databases in providing these big data for training DL models. The authors introduce core DL concepts necessary for training models from the biological data. By extensively examining DL studies in various fields of RNA biology, the authors suggest how to better leverage DL for revealing novel biological knowledge and demonstrate the potential of DL in deciphering the complex biology of RNA.

This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.

Future missions to Mars were not ruled out, though the scientists said that measures to protect the kidneys would need to be developed to avoid serious harm to astronauts. Methods of recovery could also be introduced onboard spacecraft, such as dialysis machines.

“We know what has happened to astronauts on the relatively short space missions conducted so far, in terms of an increase in health issues such as kidney stones,” said Dr Keith Siew, first author of the study from the London Tubular Centre, based at the UCL Department of Renal Medicine.

What we don’t know is why these issues occur, nor what is going to happen to astronauts on longer flights such as the proposed mission to Mars. If we don’t develop new ways to protect the kidneys, I’d say that while an astronaut could make it to Mars they might need dialysis on the way back.

Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. Here the authors train a deep neural network to predict and dynamically control gene expression in thousands of individual bacteria in real-time which they then apply to control antibiotic resistance and study single-cell survival dynamics.

Immunizing enormous numbers of wild mice, however, is prohibitively difficult. By using genetic engineering, researchers could create white-footed mice that produced these antibodies from birth and could pass this ability on to their offspring. But did the island residents want to live with genetically engineered mice?

The answer was perhaps, but with caveats. In consulting with communities on this technology development, researchers found that community members preferred a cisgenic approach: They wanted white-footed mice that were engineered with DNA only from other white-footed mice.18 This would make the project more difficult for the researchers, and meant that a CRISPR-based gene drive, even one with limited spread, could not be used, since no white-footed mouse naturally has this gene-editing system. However, said Esvelt, “It’s their environment, so it’s their call.”

“We’re potentially causing an irreversible change to the environment,” said Telford. “We need to think about informed consent of the community as a proxy for informed consent of the environment. That’s been a real advance and something [that Esvelt] has pioneered—involving the communities from the very start.”