Toggle light / dark theme

Synthetic stem cells promise muscle regeneration without cancer risk

Scientists are hailing a pioneering stem cell technique that promises “off-the-shelf” treatment for people with damaged muscles without the existing risks.

Researchers have for the first time successfully implanted “synthetic” cardiac stem cells which successfully repaired muscle tissue that had been weakened by a heart attack.

Traditional stem cell therapy comes with a risk of cancer because scientists are unable to stop the cells replicating and forming tumours.

Losing body fat could be facilitated

Time to work off that Chritmas Turkey bigsmile


Making muscles burn more fat and less glucose can increase exercise endurance, but could simultaneously cause diabetes, says a team of scientists from Baylor College of Medicine and other institutions.

Mouse muscles use (carbohydrate) as fuel when the animals are awake and active and switch to fat (lipid) when they are asleep. The team discovered that disrupting this natural cycle may lead to diabetes but, surprisingly, can also enhance exercise endurance. The switch is controlled by a molecule called histone deacetylase 3, or HDAC3. This finding opens the possibility of selecting the right time to exercise for losing body fat but also raises the concern of using HDAC inhibitors as doping drugs for endurance exercise. The study appears in Nature Medicine.

“How the uses glucose is regulated by its internal that anticipates the level of its activity during the day and at night,” said senior author Dr. Zheng Sun, assistant professor of medicine—diabetes, endocrinology and metabolism, and of molecular and cellular biology at Baylor. “The circadian clock works by turning certain genes on and off as the 24-hour cycle progresses. HDAC3 is a key connection between the circadian clock and gene expression. Our previous work showed that HDAC3 helps the liver alternate between producing glucose and producing lipid. In this work, we studied how HDAC3 controls the use of different fuels in .”

Medgadget’s Best Medical Technologies of 2016

The year 2016 presented the world with a number of big surprises. Some positive, some negative, depending on whom one asks. Here at Medgadget, 2016 will be remembered for many amazing and pleasantly unexpected medical technology developments, many of which are foreshadowing cures for spinal cord injuries, effective treatment of diabetes, new ways to fight heart disease, and many other long sought-after medical solutions. Virtual and augmented reality systems, new imaging techniques, and innovative delivery approaches are changing the way doctors learn and take care of patients.

Looking back on the past year, we selected what we felt to be the most important, innovative, and surprising medical technology developments. They naturally fell into a few categories. Here we share with you Medgadget’s choices of Best Medical Technologies of 2016.

Now You Can Make Movies of Living Cells With Your Smartphone!

Very cool; I do look forward to see where we land in the next 5 years on mobile imaging systems.

Years ago I remember developing software for a mobile blood gas analyzer to help researchers and doctors in some of the world’s most remote locations. And, the technology then did improve survival rates for so many. And, I see advances like this one doing so much for many who do not have access or the luxury of centralize labs, or hospitals, etc.


Democratizing Cellular Time-Lapses with a Cell-Phone!

A group of researchers from Uppsala University have recently developed an affordable system capable of capturing time-lapse videos of living cells under various conditions. Dubbed the affordable time-lapse imaging and incubation systm (ATLIS), the system can be constructed out of off-the-shelf electronic components and 3D-printed parts while using a standard smartphone for imaging.

While there have been other microscope adapters for smartphones to enable easy image capturing, the ATLIS is much more than microscope smartphone adapters. It is optimised in order to convert old microscopes found in abundance in Universities and hospitals into full-fledged time-lapse systems to image cell dynamics. Such a system requires strict environmental control of temperature, pH, osmolarity and light exposure in order to maintain normal cell behaviour.

CellAge Campaign Q&A: Is It Safe To Remove Senescent Cells? | Lifespan.io

Is it safe to remove senescent cells? This is a common question we hear when talking about senolytic therapies designed to remove these problem cells that accumulate with age and play havoc with the body and its ability to repair.


Mantas from CellAge answers a question from one of our readers about senescent cell removal therapy. The removal of senescent cells has become a very hot topic this year with numerous experiments showing positive results for health and disease mitigation.

Check out the campaign at Lifespan.io and donate to a better healthier future:

https://www.lifespan.io/campaigns/cellage-targeting-senescen…c-biology/

/* */