Toggle light / dark theme

Invading the brain to understand and repair cognition

April 5, 2016, New York — People are using brain-machine interfaces to restore motor function in ways never before possible — through limb prosthetics and exoskletons. But technologies to repair and improve cognition have been more elusive. That is rapidly changing with new tools — from fully implantable brain devices to neuron-eavesdropping grids atop the brain — to directly probe the mind.

These new technologies, being presented today at the Cognitive Neuroscience Society (CNS) annual conference in New York City, are mapping new understandings of cognition and advancing efforts to improve memory and learning in patients with cognitive deficits.

Eavesdropping on neurons

“A new era” of electrophysiology is now upon us, says Josef Parvizi of Stanford University who is chairing the CNS symposium on the topic. “We have gotten a much sharper view of the brain’s electrophysiological activity” using techniques once relegated to science fiction.

Technicolor stores Hollywood history in a bottle

A Technicolor scientist surrounded by the latest virtual reality technology inspects a vial containing a few droplets of water—and one million copies of an old movie encoded into DNA.

The company has come a long way since the Hollywood golden age, when the world gazed in awe at the lush palette of “The Wizard of Oz” and “Gone with the Wind” provided by its three-strip cameras.

Now celebrating its centenary year, Technicolor’s laboratories are at the cutting edge of the science of filmmaking, leading a worldwide revolution in immersive entertainment.

World’s Smallest Diode Is Made of DNA

Diodes —also known as rectifiers—allow electric current to flow in just one direction. More than 40 years ago, scientists proposed miniaturizing diodes and other electronic components down to the size of single molecules, an idea that eventually helped give birth to the field of molecular electronics, which could help push computing beyond the limits of conventional silicon devices. [See “Whatever Happened to the Molecular Computer?IEEE Spectrum, October 2015]

Scientists at the University of Georgia and Ben-Gurion University of the Negev in Israel used DNA to fashion the new diode. The breakthroughs in genetics developed to sequence the human genome have now made it relatively easy to precisely manufacture and manipulate DNA, which makes the molecule a leading candidate for use in molecular electronics.

DNA’s double helix is made of paired strands of molecules known as bases. The new diode is only 11 base pairs long. (Typically, DNA is 0.34 nanometers long per base pair.)

Toyota forms company to make technology simpler

Very nice goal to have “all things connected” in Toyota’s and Microsoft’s case is “Singularity” lite meaning physical structures are connected; however, bio connection does not exist (only consumer profile information is available and integrated). This could be considered an interim state for Singularity.


The company called Toyota Connected has a goal of simplifying technology so it’s easier to use, perhaps even getting rid of distracting and complicated touch screens that now are in most cars and replacing them with heads-up or voice-activated technology, said Zack Hicks, the company’s CEO who also is Toyota Motor America’s chief information officer. Like other automakers, Toyota Connected will research connecting cars to each other and to homes, as well as telematics features that learn and anticipate a driver’s habits. The company, like other automakers, will explore transmitting a driver’s health data to a doctor or driving patterns to an insurance company so people are insured based on where they travel, Toyota said.

CRISPR Dispute Raises Bigger Patent Issues That We’re Not Talking About

Good read; and highlights fair arguments around science and technology innovations and their patents. CRISPR was highlighted; however, the same can be applied to things like AI. What happens when a Humanoid robot owned by an investment bank innovates and develops new technology for Wall Street? The humanoid robot was (in this example) created by Microsoft; however, is owned by a Goldman Sachs. Who truly owns this new technology innovation? Could we see Goldman Sachs owning 70% of the patent & Microsoft owning 30%?


The worlds of science, technology and patent law eagerly await the U.S. government’s decision on who deserves patents on what many have referred to as the biotechnology invention of the century: the CRISPR/Cas9 gene-editing technique.

Scientists hail CRISPR/Cas9 as more accurate and efficient than other, now-traditional genetic engineering methods. As a result, CRISPR has generated worldwide debate about how it could accelerate the manipulation of plants, animals and even human beings at the molecular level. That some DNA modifications can be passed on to future generations raises particular concern.

But the patent dispute, focusing on whether scientists at the Broad Institute of MIT and Harvard or those at University of California, Berkeley invented the technology, seems far from these ethical concerns. Each institution asserts that its scientists are the rightful inventors — and therefore the owners of the CRISPR/Cas9 patents. As proof, the scientists are submitting their published articles, laboratory notebooks and affidavits to the US Patent and Trademark Office, which will make a decision in the next few months.

Of mice and old men: is the elixir of youth finally coming of age?

Preliminary work suggests that T-cells, which normally target disease, can be genetically engineered to target senescent cells in a wide range of tissues. In future, an infusion of GM blood every few years might be able to keep you going indefinitely (assuming some major advances in treating cancer, Alzheimer’s and heart disease). At which point, the question might be less: “How long have I got?” and more: “How long do you fancy sticking around?”


American scientists have coined the term ‘senolytics’ to describe a new class of drugs designed to delay the ageing process by clearing out doddery cells.

/* */