Toggle light / dark theme

Troubled Times Ahead for Supercomputers

Supercomputer facing problems?


In the world of High Performance Computing (HPC), supercomputers represent the peak of capability, with performance measured in petaFLOPs (1015 operations per second). They play a key role in climate research, drug research, oil and gas exploration, cryptanalysis, and nuclear weapons development. But after decades of steady improvement, changes are coming as old technologies start to run into fundamental problems.

When you’re talking about supercomputers, a good place to start is the TOP500 list. Published twice a year, it ranks the world’s fastest machines based on their performance on the Linpack benchmark, which solves a dense system of linear equations using double precision (64 bit) arithmetic.

Looking down the list, you soon run into some numbers that boggle the mind. The Tianhe-2 (Milky Way-2), a system deployed at the National Supercomputer Center in Guangzho, China, is the number one system as of November 2015, a position it’s held since 2013. Running Linpack, it clocks in at 33.86 × 1015 floating point operations per second (33.86 PFLOPS).

Why precision medicine is important for our future

We definitely need precision medicine. If you don’t believe it is worth that; then I have a few widows & widowers who you should speak to; I have parents that you should speak with; I have a list of sisters & brothers that you should speak with; and I have many many friends (including me) that you should speak with about how we miss those we love because things like precision medicine wasn’t available and could have saved their lives.


Precision medicine is the theme for the 10th annual symposium of the Johns Hopkins Institute for Nano Biotechnology, Friday, April 29, 2016 at 9 a.m. in the Owens Auditorium at the School of Medicine. This year’s event is cohosted by Johns Hopkins Individualized Health Initiative (also known as Hopkins in Health) and features several in Health affiliated speakers.

By developing treatments that overcome the limitations of the one-size-fits-all mindset, precision medicine will more effectively prevent and thwart disease. Driven by data provided from sources such as electronic medical records, public health investigations, clinical studies, and from patients themselves through new point-of-care assays, wearable sensors and smartphone apps, precision medicine will become the gold standard of care in the not-so-distant future. Before long, we will be able to treat and also prevent diseases such as diabetes, Alzheimer’s disease, heart disease, and cancer with regimes that are tailor-made for the individual.

Hopkins in Health is a signature initiative of Johns Hopkins University’s $4.5 billion Rising to the Challenge campaign is a collaboration among three institutions: the University, the Johns Hopkins Health System, and the Applied Physics Laboratory. These in Health researchers combine clinical, genetic, lifestyle, and other data sources to create innovative tools intended to improve decision-making in the prevention and treatment of a range of conditions, including cancer, cardiovascular disease, autoimmune disorders, and infectious disease. The goal is to “provide the right care to the right person at the right time.”

Virtual Dining Experience Allows You To Taste Food Without The Calories

Is AR your new diet plan?


The future of dining is here, and it’s all about molecular gastronomy, augmented reality headsets and multi-textured algae — and it’s virtually no calories.

Researchers at Project Nourished have found a way to merge the taste, feel and smell of food using atomizers, virtual reality headsets, a device that mimics chewing sounds, a glass with built-in sensors, a specialized utensil, and a 3D-printed food cube. The goal is to trick the user’s mind and palate into thinking they’re experiencing something entirely different than what they’re actually eating.

According to CEO Jinsoo An, the project was born out of his frustrations with his own gluten and soy sensitivities. He wants to help people struggling with weight management, diabetes and other food intolerances, so they can enjoy foods they might not otherwise be able to consume.

Nanoparticles may help treat blood cancer

Nano-particles to treat Acute Myeloid Leukaemia.


A new therapeutic strategy for treating Acute Myeloid Leukaemia could involve using nano-particles to deliver a genetic molecule to fight the disease.

The nanoparticles carrying microRNA miR-22, (a small non-coding RNA molecule that regulates gene expression), showed therapeutic potential in mouse models of Acute Myeloid Leukemia (AML).

AML is a form of cancer of the blood cells which, despite intensive chemotherapy, is often fatal within one or two years from diagnosis.

Minimally invasive colitis screening using infrared technology could offer fast, simple test

Could we use this for colon scopes? I know many who would like to stop drining the speciality milk shake from their local drug stores prior to the date with the GI.


A minimally invasive screening for ulcerative colitis, a debilitating gastrointestinal tract disorder, using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body, according to researchers at Georgia State University.

The technique involves testing serum, the clear liquid that can be separated from clotted blood, for the increased presence of mannose, a sugar that is a marker for , using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. This technology is sensitive to vibrations in the chemical bonds of the serum sample’s molecules and requires minimal sample preparation, making it a rapid diagnostic alternative.

The findings are published in the Journal of Biophotonics.

Low levels of vitamin D, methylation in black teens may increase cancer risk

Lesson in Vitamin D.


Low levels of vitamin D in black teens correlates with low activity of a major mechanism for controlling gene expression that may increase their risk of cancer and other disease, researchers report.

Their study measured vitamin D levels as well as levels of global DNA methylation in 454 healthy individuals age 14–18. In this group, 99 percent of the white teens had adequate vitamin D levels, 66 percent of the black teens were vitamin D-deficient and all the black teens had lower levels of methylation compared to their white peers, said Dr. Haidong Zhu, molecular geneticist at the Georgia Prevention Institute at the Medical College of Georgia at Augusta University.

When they looked at another group of 58 young black individuals also with low vitamin D and methylation levels who received varying doses of vitamin D supplements for 16 weeks, they found a dose response: the more vitamin D received, the higher the methylation activity, said Zhu, corresponding author of the study in the journal PLOS ONE.

Sister offers warning about an increasing kind of cancer

After today’s news from India about HPV; I did some research online about Cold Sores and HPV possible tie and came across the following article that seems to highlight a possible tie. Granted more research is needed; however, one doctor seems to believe there is a tie.


Sister Mary Ryan thought she had a simple, but painful, canker sore in her mouth that would not heal when she went to her dentist in 1998.

She was surprised to find out it was a cancerous tumor under her tongue, and even more surprised at how quickly it had developed.

Having just been to the dentist that January, she had no idea when she returned for an appointment in May that an oral surgeon would be called in immediately to examine her mouth.

Researchers use light to battle cancer

BOSTON: In an intriguing approach to the fight against cancer, researchers for the first time have used light to prevent and reverse tumors using a technique called optogenetics to manipulate electrical signaling in cells.

Scientists at Tufts University performed optogenetics experiments on frogs, often used in basic research into cancer because of the biological similarities in their tumors to those in mammals, to test whether this method already used in brain and nervous system research could be applied to cancer.

“We call this whole research program cracking the bioelectric code,” said biologist Michael Levin, who heads the Tufts Center for Regenerative and Developmental Biology.

/* */