Toggle light / dark theme

Researchers discover new rules for quasicrystals

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals are an exotic exception to this rule. First discovered in 1982, their atoms pack together in an orderly fashion, but in a mosaic-like pattern that doesn’t repeat and can’t be predicted from a small sample.

Being able to map out the position of within a quasicrystal is a prerequisite for achieving a complete understanding of their structure and aids in designing them for specific applications, but conventional microscopy techniques don’t have the resolution to accomplish such a task.

In an effort to address this challenge, researchers from the University of Pennsylvania and the University of Michigan have engineered a quasicrystal that is formed by self-assembling nanoparticles, which are an order of magnitude larger than the atoms that comprise traditional quasicrystals. Their larger size enabled the team to use a suite of microscopy and simulation techniques to deduce, for the first time, the full three-dimensional configuration of a spontaneously formed quasicrystal.

The Lancet: Swiss doctors report success of using cells from the nose to repair damaged knee joints 2 years post operation

Tissue engineering makes further progress for repairing damaged joints.


Writing in The Lancet, Swiss doctors report that cartilage cells harvested from patients’ own noses have been used to successfully produce cartilage transplants for the treatment of the knees of 10 adults (aged 18–55 years) whose cartilage was damaged by injury. Two years after reconstruction, most recipients reported improvements in pain, knee function, and quality of life, as well as developing repair tissue that is similar in composition to native cartilage.

Despite this promising start, however, the effectiveness of the procedure needs to be rigorously assessed in larger randomised trials compared to conventional treatments and with longer follow up before any firm conclusions can be drawn about its use in routine clinical practice, say the authors.

Every year, around 2 million people across Europe and the USA are diagnosed with damage to articular cartilage because of injuries or accidents. Articular cartilage is the tissue on the end of a bone that cushions the surface of the joint and is vital for painless movement. Because the tissue doesn’t have its own blood supply, it has limited capacity to repair itself once damaged, leading to degenerative joint conditions like osteoarthritis. Traditional methods to prevent or delay onset of cartilage degeneration following traumatic events like microfracture surgery don’t create the healthy cartilage needed to endure the forces of everyday movement. Even novel medical advances using patients’ own articular cartilage cells (chondrocytes) have been unable to predictably restore cartilage structure and function in the long term. As the population ages and people live longer, there is an urgent and growing need to develop an effective therapy to repair cartilage damage.

Fighting cancer with the power of immunity

Combination therapy to kick cancer to the curb!


Harnessing the body’s own immune system to destroy tumors is a tantalizing prospect that has yet to realize its full potential. However, a new advance from MIT may bring this strategy, known as cancer immunotherapy, closer to becoming reality.

In the new study, the researchers used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, in mice.

“We have shown that with the right combination of signals, the endogenous immune system can routinely overcome large immunosuppressive tumors, which was an unanswered question,” says Darrell Irvine, a professor of biological engineering and of materials science and engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.

Newly-developed ‘gene therapy in a box’ could save millions of lives

Gene therapy in a box could reduce costs and save lives.


unnamed-1Gene therapy — the process of genetically altering cells to treat disease — is a highly promising process being studied as a way to cure devastating conditions like genetic disorders, HIV, and even cancer.

But despite the great need for medical advances in these areas, gene therapy can only be performed at a handful of high-tech clinics around the world and require highly trained staff, meaning that it may never be accessible to the millions of people whose lives it could save.

Enter “gene therapy in a box,” a table-top device developed at the Fred Hutchinson Cancer Research center in Seattle, which could provide gene therapy treatments without the expensive and rare medical infrastructure currently needed. My hope is that this technology… could open the door to saving millions of lives.

Cartilage from nose is used to repair bum knees

Using cells from the cartilage in patients’ noses, Swiss doctors have successfully made patches to treat 10 adults whose knee cartilage was damaged by injury.

Two years after the transplants, most of the patients grew new cartilage in their knees and reported improvements in pain, knee function and quality of life.

“We have developed a new, promising approach to the treatment of articular cartilage injuries,” said lead researcher Ivan Martin, a professor of tissue engineering at the University of Basel. The articular cartilage is the tissue that covers and protects the ends of the knee bones, and injuries to it can lead to degenerative joint conditions like osteoarthritis.

Associations between Periodontal Microbiota and Death Rates

Brushing your teeth has never been so important.


It is conceived that specific combinations of periodontal bacteria are associated with risk for the various forms of periodontitis. We hypothesized that such specificity is also related to human cause-specific death rates. We tested this hypothesis in a representative sample of the US population followed for a mean duration of 11 years and found that two specific patterns of 21 serum antibodies against periodontal bacteria were significantly associated with increased all-cause and/or diabetes-related mortalities. These data suggested that specific combinations of periodontal bacteria, even without inducing clinically significant periodontitis, may have a significant impact on human cause-specific death rates. Our findings implied that increased disease and mortality risk could be transmittable via the transfer of oral microbiota, and that developing personalized strategies and maintaining healthy oral microbiota beyond protection against periodontitis would be important to manage the risk.

Can DNA Hard Drives Solve Our Looming Data Storage Crisis?

The idea of storing digital data in DNA seems like science fiction. At first glance, it might not seem obvious that a molecule can store data. The term “data storage” conjures up images of physical artifacts like CDs and data centers, not a microscopic molecule like DNA. But there are a number of reasons why DNA is an exciting option for information storage.

The status quo

We’re in the midst of a data explosion. We create vast amounts of information via our estimated 17 billion internet-connected devices: smartphones, cars, health trackers, and all other devices. As we continue to add sensors and network connectivity to physical devices we will produce more and more data. Similarly, as we bring online the 4.2 billion people who are currently offline, we will produce more and more data.

/* */